
Documents
This is an excerpt from “XML: The Annotated Specification” by Bob DuCharme (ISBN 0-13-082676-

6). As with the rest of the book (which also includes introductory material, a glossary, and several indexes)
text from the W3C XML 1.0 Specification is shown in a sans-serif font on a gray background and annota-
tions are shown in a serif font against a white background. See http://www.snee.com/bob/xmlann for more
information.

Annotations © 1998 Bob DuCharme. The XML specification is reproduced in accordance with the
W3C IPR Document Notice, http://www.w3.org/Consortium/Legal/copyright-documents.html. Copyright
© World Wide Web Consortium, (Massachusetts Institute of Technology, Institut National de Recherche en
Informatique et en Automatique, Keio University). All Rights Reserved. Extensible Markup Language
(XML) 1.0, http://www.w3.org/TR/REC-xml, W3C Recommendation 10-February-1998.

❚ Well-Formed XML Documents
❚ Characters
❚ Common Syntactic Constructs
❚ Character Data and Markup
❚ Comments
❚ Processing Instructions
❚ CDATA Sections
❚ Prolog and Document Type Declaration
❚ Standalone Document Declaration
❚ White Space Handling
❚ End-of-Line Handling
❚ Language Identification

65

Chapter 2

his chapter describes issues that apply to an XML document
as a unit. It also covers the smallest possible units that can be
combined to eventually form a document: the characters that

a document can use, what we mean by “space”, and various declara-
tions and constructs such as comments and processing instructions
that don’t take an active part in defining a document’s logical or phys-
ical structure.

Splitting XML documents into these two tiers made it easier to
achieve design goal five of the spec: that the “number of optional fea-
tures in XML is to be kept to the absolute minimum, ideally zero”.
The two-tier system offers flexibility in the ease of document creation
and strictness of conformance without requiring sending and receiv-

A data object is an XML document if it is well-formed, as defined in this
specification. A well-formed XML document may in addition be valid if it
meets certain further constraints.

T

66 CHAPTER 2 | DOCUMENTS

ing systems to run down a checklist of “optional” features that each
may or may not support.

In 1.2, “Terminology”, entries for “well-formedness constraint”
and “validity constraint” tell more about the form these “further con-
straints” take.

A document’s physical structure is the relationship of the entities
(usually, the files) that make up the document. Within a collection of
entities, the main one is the “document entity”. A program reading
the collection reads that one and, for each reference to another entity
it finds in the document entity, it proceeds as if the entity itself had
replaced the reference to it (that is, “to cause their inclusion in the
document”). These entities can in turn refer to other entities; a dia-
gram of their relationships would show branches fanning out from
the central entity to form a tree, which is why we call the document
entity the “root”.

Logical structure is the schematic structure of the information. Just
as a database specialist usually designs a relational database’s tables
and columns before considering the number and organization of files
to use in storing the database, a document designer typically plans out
the structure of an XML document’s elements before worrying about
its physical entity structure.

To be as efficient as possible, a document’s physical structure is
often customized for the host operating system. This separation of
physical from logical design issues allows document collections to

Each XML document has both a logical and a physical structure. Physi-
cally, the document is composed of units called entities. An entity may
refer to other entities to cause their inclusion in the document. A docu-
ment begins in a “root” or document entity. Logically, the document is
composed of declarations, elements, comments, character references,
and processing instructions, all of which are indicated in the document by
explicit markup. The logical and physical structures must nest properly, as
described in Section 4.3.2: Well-Formed Parsed Entities.

2 . 1 . W E L L - F O R M E D X M L D O C U M E N T S 67

have a consistent logical design on different operating systems, allow-
ing the development of more portable documents.

For example, a collection of documents conforming to a single doc-
ument type might be stored on two different computers, each run-
ning a different operating system. The documents would all have the
same logical structure, but could have different physical structures on
each computer, optimized for the characteristics of that computer’s
operating system.

For more on declarations, see 2.8, “Prolog and Document Type
Declaration”; 2.9, “Standalone Document Declaration”; 3.2, “Ele-
ment Type Declarations”; 3.3, “Attribute-List Declarations”; 4.2,
“Entity Declarations”; 4.3.1, “The Text Declaration”; and 4.7,
“Notation Declarations”. For more on the other document compo-
nents listed, see 2.5, “Comments”; 4.1, “Character and Entity Refer-
ences”; and 2.6, “Processing Instructions”.

“Nesting” is the containment of one entity or logical structure
(usually an element) within another. 4.3.2, “Well-Formed Parsed
Entities”, further describes the requirements of proper nesting.

Production 1 below, for a document†, is number one for a reason:
as a parser figures out the structure of your XML document, it recog-
nizes combinations of bigger and bigger pieces (or, in computer sci-

2.1. Well-Formed XML Documents
A textual object is a well-formed XML document if:

1. Taken as a whole, it matches the production labeled document.

2. It meets all the well-formedness constraints given in this specifi-
cation.

3. Each of the parsed entities which is referenced directly or indi-
rectly within the document is well-formed.

† Throughout these annotations, symbols defined by productions are shown in
a bold Courier font.

68 CHAPTER 2 | DOCUMENTS

ence parlance, “nonterminals”) that ultimately result in a prolog,
document element, and optional miscellaneous markup (processing
instructions, white space, and comments). As this production shows,
these are combined into the document itself.

“Well-formedness constraints” are rules attached to certain produc-
tions. These specify that, for the nonterminal defined by the produc-
tion to be considered well-formed, it must also meet any constraints
described under the production. For example, production 39 has the
constraint wfc: Element Type Match listed on its right and
described underneath it. Similarly, “validity constraints” are addi-
tional rules that a nonterminal must meet if the document containing
it is to qualify as valid.

For a computer, parsing is the process of analyzing text notated in
some programming or data description language and determining its
components in accordance with the grammar of that language. For an
XML processor, this means reading text in “parsed” entities, distin-
guishing the data content from the markup, and analyzing the
markup.

4.3.2, “Well-Formed Parsed Entities”, further describes the concept
of a well-formed parsed entity. To summarize, it says that all the ele-
ments and entities must nest properly (that is, if one is enclosed by
another, the enclosed one ends before the enclosing one) and that ele-
ments (and other structures listed in 4.3.2, “Well-Formed Parsed
Entities”) can’t begin in one entity and end in another.

Document

[1] document ::= prolog element Misc*

2 . 1 . W E L L - F O R M E D X M L D O C U M E N T S 69

Elements, described further in Chapter 3, “Logical Structures”, are
the building blocks of an XML document. Elements have start- and
end-tags, and may have character data, other elements, or both
between these tags. (Empty elements may use an empty-element tag
instead of a start- and end-tag pair.) In an HTML document, an h2
element usually has only character data between the tags (for example,
“<h2>The Fire Sermon</h2>”), while the start- and end-tags for the
HTML body element have other elements between them.

XML elements can also be empty. These can be represented as a
start-tag immediately followed by an end-tag or as a shorter alterna-
tive known as an empty-element tag, which has a slash before its clos-
ing “>”. For example, an empty HTML img element such as
 could be written as
 in XML.

Just as a document’s entities have a root, so do its elements. If you
draw a graph of a document’s elements that shows each element
branching off into its children (that is, the sub-elements, or elements
contained within it) there will be one element containing them all.

Tip Parsing is the first step in validating, or deciding whether a
document meets the rules specified by XML and the document’s
DTD, so the terms “parsing” and “validating” are often confused.
Part of the confusion results from people using the expression “the
document doesn’t parse” to mean “it’s not valid” and “it parses” to
mean “it’s valid”.

Matching the document production implies that:

1. It contains one or more elements.

2. There is exactly one element, called the root, or document ele-
ment, no part of which appears in the content of any other ele-
ment. For all other elements, if the start-tag is in the content of
another element, the end-tag is in the content of the same ele-
ment. More simply stated, the elements, delimited by start- and
end-tags, nest properly within each other.

70 CHAPTER 2 | DOCUMENTS

This element is the root of the tree picture created by your graph, so
we call it the root element of the document. (The term is interchange-
able with “document element”.) It’s not enclosed by any other ele-
ment, and all the other elements of a document are enclosed within it.

In other words, an element anywhere inside the root element has
one and only one parent element. (The C and P in the spec’s example
stand for “child” and “parent”.) A child element is inside its parent
and not inside any of the parent’s other child elements.

The ISO/IEC 10646 standard created by a joint commission of the
ISO and the International Electrotechnical Commission in 1993
specifies the Universal Multiple-Octet Coded Character Set (UCS).

Let’s break down this phrase “Universal Multiple-Octet Coded
Character Set”. The Universal Character Set is a collection of charac-
ters (usually, elements of alphabets, numeric digits, and other charac-
ters such as punctuation) that aims to represent all the written
languages of the world.

What does it mean to do this with multiple octets? An octet is a
grouping of eight bits of information. (On PCs and Macintoshes, a

As a consequence of this, for each non-root element C in the document,
there is one other element P in the document such that C is in the content
of P, but is not in the content of any other element that is in the content of
P. P is referred to as the parent of C, and C as a child of P.

2.2. Characters
A parsed entity contains text, a sequence of characters, which may repre-
sent markup or character data. A character is an atomic unit of text as
specified by ISO/IEC 10646 [ISO/IEC 10646]. Legal characters are tab,
carriage return, line feed, and the legal graphic characters of Unicode and
ISO/IEC 10646. The use of “compatibility characters”, as defined in
section 6.8 of [Unicode], is discouraged.

2 . 2 . C H A R A C T E R S 71

byte is eight bits, but not on all other machines, so it’s incorrect to
always refer to eight bits as a byte.) An octet can represent 256 differ-
ent values. This is enough for all the characters on an English-lan-
guage keyboard and some other miscellaneous ones, but certainly not
enough to cover all the characters in all the languages that people
want to use when storing documents on computers. Doing this
requires multiple octets for each character.

Using two octets per character, you can represent 65,536 different
characters; the ISO 10646 version of this is known as UCS-2. Four
octets, UCS-4, can represent over two billion different characters (of
the 32 bits in the four octets of a UCS-4 character, the first must be
“0”, leaving over two billion possible combinations of the remaining
thirty-one bits).

Unicode is a standard developed by the Unicode Consortium for
representing characters with 16 bits. This group of mostly American
computer manufacturers is a separate organization from the ISO that
has worked closely with them to keep their standard aligned with the
UCS-2 subset of ISO 10646. These two standards, in order to remain
backward-compatible with existing text files, have the same first 128
characters as the 128 characters in the ASCII character set used by
PCs, Macintoshes, and UNIX computers. Therefore, an upper-case
“A” is still represented by character 65 and a lower-case “a” by charac-
ter 97. The XML specification cites both standards because citing
only one would imply that XML would follow that one’s lead if it ever
diverged from the other standard, so identifying the two together
encourages them to stay in synch.

Unicode represents some characters more than once, with the extra
versions known as “compatibility characters”. These are added to ease
“round-trip” conversions with (that is, conversions into and then back
from) other character set standards. The XML spec doesn’t look
kindly on these because multiple ways to represent the same charac-
ter—especially when one way is more efficient and the other is only

72 CHAPTER 2 | DOCUMENTS

there as a compromise with other standards—leaves more room for
error in a text processing system.

“#x” at the beginning of a number shows that it’s written in hexa-
decimal, or base 16 notation, as opposed to the decimal, “base 10”
notation that non-programmers are accustomed to. Hexadecimal
notation represents the decimal notation numbers 10 through 15
using the letters A through F, so the decimal numbers 8, 9 10, and 11
would be “#x8”, “#x9”, “#xA”, and “#xB” in hexadecimal. “#x10”
represents the decimal number 16, “#x11” is 17, “#x12” is 18,
“#xA0” is 160 (as is “#xa0”—the case of alphabetic digits in hexadeci-
mal numbers doesn’t matter), “#xA1” is 161, and so on. Production 2
shows that the decimal values 9, 10, 13, 32 – 55295, 57344 – 65533,
and 65536 – 1114111 can be used to represent XML characters.

Why use hexadecimal, or in programmer slang, “hex”? Translated
to binary, a single hex digit requires four bits, so the eight bits repre-
sented by two hex digits will fit into, and completely occupy, a single
octet. The use of hexadecimal digits is an efficient compromise
between the decimal representation so familiar to humans and the
binary representation used by computers. It’s also important in the
XML world because Unicode refers to each character by its hexadeci-
mal, not decimal value.

Character Range

[2] Char ::= #x9 | #xA | #xD | [#x20-#xD7FF] |
[#xE000-#xFFFD] | [#x10000-#x10FFFF]

/* any Unicode character,
excluding the surrogate
blocks, FFFE, and FFFF. */

The mechanism for encoding character code points into bit patterns may
vary from entity to entity. All XML processors must accept the UTF-8 and
UTF-16 encodings of 10646; the mechanisms for signaling which of the
two is in use, or for bringing other encodings into play, are discussed later,
in Section 4.3.3: Character Encoding in Entities.

2 . 3 . C O M M O N S Y N T A C T I C C O N S T R U C T S 73

Two different entities may use different encodings, or sets of associ-
ations between characters and the bit patterns that represent them in
computer storage. All programs that process XML documents must
accept the ISO 10646 UTF-8 and UTF-16 encodings. UCS Trans-
formation Format (UTF) 8 and UTF-16 are specific encodings of
ISO 10646 characters as sequences of octets.

The “discussion of character encodings” alluded to is 4.3.3, “Char-
acter Encoding in Entities”, on page 210.

By “space (#x20) characters”, it means ASCII character 32—the
character you type by pressing your keyboard’s space bar. (“x20” is the
hexadecimal equivalent of 32.)

#x9 is the character that you type with your Tab key. Carriage
returns and line feeds are two different characters (numbers 13 and
10, or in hex, #xD and #xA) used by different operating systems to
represent the end of a line of text; see 2.11, “End-of-Line Handling”
for more on these.

2.3. Common Syntactic Constructs
This section defines some symbols used widely in the grammar.

S (white space) consists of one or more space (#x20) characters, carriage
returns, line feeds, or tabs.

White Space

[3] S ::= (#x20 | #x9 | #xD | #xA)+

Characters are classified for convenience as letters, digits, or other char-
acters. Letters consist of an alphabetic or syllabic base character possi-
bly followed by one or more combining characters, or of an ideographic
character. Full definitions of the specific characters in each class are
given in Appendix B: Character Classes.

74 CHAPTER 2 | DOCUMENTS

“España”, the Spanish word for “Spain”, has a good example of a
letter (n-tilde, or “ñ”) that could be coded as the alphabetic base char-
acter “n” with the combining character “~”.

An ideographic character, unlike the characters of most Western
alphabets, represents an object or idea instead of a particular sound.
Appendix B, “Character Classes”, lists which characters are consid-
ered letters, which are digits, and so forth.

The concept of a name is important in XML because it’s used so
often in defining other XML constructs. A token, or terminal, is one
of the indivisible units of a document. Tokens are combined accord-
ing to production rules into nonterminals which are combined into
larger nonterminals. These eventually form the most important non-
terminal of them all: the XML document, a nonterminal defined by
production 1. Element type names, “DOCTYPE”, and many other
strings of characters used in markup are name tokens. (A “full stop”,
by the way, is the punctuation character also known as a “period”.)

When you make up names to use, such as element type or entity
names, don’t begin them with the letters “XML” in any combination
of upper- and lower-case. (The part in the specification paragraph
above with all the parentheses is the regular expression way of saying
“XML in any combination of upper- and lower-case”. See Chapter 6,
“Notation”, for more on regular expression syntax.)

The spec prohibits names beginning with “XML” so that when the
specification designates names with particular meanings for use in
XML (for example, the xml:space attribute described in 2.10,
“White Space Handling”), there will be no conflict. If your document

A Name is a token beginning with a letter or one of a few punctuation
characters, and continuing with letters, digits, hyphens, underscores,
colons, or full stops, together known as name characters. Names begin-
ning with the string “xml”, or any string which would match ((’X’|’x’)
(’M’|’m’) (’L’|’l’)) , are reserved for standardization in this or
future versions of this specification.

2 . 3 . C O M M O N S Y N T A C T I C C O N S T R U C T S 75

has an element type named xmlelement and some future version of
XML creates an xmlelement keyword for some special purpose that
hadn’t been invented when you decided on your element type name,
you could have a problem with your document.

The preceding specification paragraph told us that it was OK to use
the colon character (“:”) in names; this one tells us to avoid it. It’s
being set aside here for eventual use in solving the namespace prob-
lem.

A namespace is a set of unique names. Consider a document type
that uses element types and entities declared in two other DTDs.† For
example, if you’re doing a business plan for a restaurant, perhaps
finance.dtd and kitchen.dtd both have element types that you
need in your document. What if these two DTDs each declare an ele-
ment type named instrument, and the two declarations for this
instrument element type are different? Which declaration applies
when you want to create a new instrument element for your docu-
ment?

One proposal suggests that you assign a name to each of the two
DTDs—for example, “kitchen” and “finance”—and then you could
refer to the <kitchen:instrument> and <finance:instrument>

NOTE: The colon character within XML names is reserved for
experimentation with name spaces. Its meaning is expected to be
standardized at some future point, at which point those docu-
ments using the colon for experimental purposes may need to be
updated. (There is no guarantee that any name-space mechanism
adopted for XML will in fact use the colon as a name-space delim-
iter.) In practice, this means that authors should not use the colon
in XML names except as part of name-space experiments, but
that XML processors should accept the colon as a name charac-
ter.

† For more on the use of external subsets for markup declarations, see 2.8, “Pro-
log and Document Type Declaration”.

76 CHAPTER 2 | DOCUMENTS

element types to avoid confusion. Whether the namespace problem is
resolved with this syntax or some variation of it, the general plan is to
somehow use the colon, so don’t use it for something else.

A name token is a slightly relaxed version of a name; as production
7 shows, it’s a string of NameChar characters. (As production 4 shows,
these are letters, numeric digits, the period, hyphen, underscore and
colon, plus the CombiningChar and Extender characters listed in
Appendix B, “Character Classes”.) Unlike a name (see production 5)
a name token doesn’t have to begin with a letter, underscore, or colon.

The specification doesn’t use name tokens in all the different con-
texts that it uses names. They’re only used for one type of attribute
that limits the format of the attribute’s values.

For example, declaring an employee element type’s phone attribute
with the declaration shown in Example 2.1 would give a document’s
author a very broad leeway in the allowable phone number values (for
example, “(4 0 8) 5 5 5 1 2 1 2” with spaces between the numbers
would be legal). However, a declaration like that shown in Example
2.2 would tell a validating XML editor to only allow phone numbers
that conformed to production 7, thus preventing spaces and various
odd punctuation that you wouldn’t want in a phone number. (Note
that parentheses are also excluded, so NMTOKEN may not be the
most ideal choice for a phone number attribute type.)

Example 2.1: Declaring employee element type’s phone attribute as type
CDATA

<!ATTLIST employee phone CDATA #REQUIRED>

Example 2.2: Declaring employee element type’s phone attribute as type
NMTOKEN

<!ATTLIST employee phone NMTOKEN #REQUIRED>

An Nmtoken (name token) is any mixture of name characters.

2 . 3 . C O M M O N S Y N T A C T I C C O N S T R U C T S 77

3.3.1, “Attribute Types”, describes the full choice of types available
when declaring attributes.

“Any quoted string not containing the quotation mark used as a
delimiter” means one of two things:

■ A string of characters surrounded by but not containing
quotation mark characters (or in programmer slang,
double quotes, “like those surrounding this phrase”).

■ A string of characters surrounded by but not containing
apostrophes (programmer slang: single quotes, ‘like those
surrounding this phrase’).

An internal entity consisting of the string “Shantih shantih shan-
tih” could be declared as shown in Examples 2.3 or 2.4.

Example 2.3: Entity replacement text surrounded by double quotes in
declaration

<!ENTITY sss "Shantih shantih shantih">

Names and Tokens

[4] NameChar ::= Letter | Digit | ’.’ | ’-’ | ’_’ | ’:’ |
CombiningChar | Extender

[5] Name ::= (Letter | ’_’ | ’:’) (NameChar)*

[6] Names ::= Name (S Name)*

[7] Nmtoken ::= (NameChar)+

[8] Nmtokens ::= Nmtoken (S Nmtoken)*

Literal data is any quoted string not containing the quotation mark used as
a delimiter for that string. Literals are used for specifying the content of
internal entities (EntityValue), the values of attributes (AttValue), and
external identifiers (SystemLiteral). Note that a SystemLiteral can be
parsed without scanning for markup.

78 CHAPTER 2 | DOCUMENTS

Example 2.4: Entity replacement text surrounded by single quotes in
declaration

<!ENTITY sss ’Shantih shantih shantih’>

Similarly, either double or single quotes could be used to identify
the author’s initials in the chapter element’s attribute specification
shown in Example 2.5, or in the DTD file name in the DOCTYPE
declaration’s external identifier shown in Example 2.6.

Example 2.5: Double quotes used to delimit attribute value

<chapter author="TSE">

Example 2.6: Single quotes used to delimit system literal in a DOCTYPE
declaration

<!DOCTYPE harangue SYSTEM ’rant.dtd’>

The fact that “a SystemLiteral can be parsed without scanning
for markup” means that a parser will treat as data anything that looks
like markup in the system literal. For example, the parser will not
treat the second, third, and fourth characters of the system literal in
Example 2.7 as a reference to an a entity even though the “a” is
enclosed by the “&” and “;” characters used to delimit an entity refer-
ence.

Example 2.7: Markup characters (& and ;) that won’t be treated as
markup because they’re in a system literal

<!DOCTYPE harangue SYSTEM "r&a;nt.dtd">

(Don’t try this at home with important data—using such punctua-
tion in file names is asking for trouble on any operating system, even

2 . 4 . C H A R A C T E R D A T A A N D M A R K U P 79

if the XML application software can handle it.) 4.2.2, “External Enti-
ties”, has more on using system literals in external entity references.

Productions 9 through 13 show delimited strings, or “literals”. The
first four productions each offer two nearly identical choices that dif-
fer only in whether double or single quotes are the delimiters. The
square brackets at the beginning of each expression show which char-
acters are prohibited there. The “^” character signifies negation; for
example, [^xyz] means “any character except x, y, or z”. See Chapter
6, “Notation”, for more on regular expression syntax.

After the first specification paragraph above describes the categories
of possible markup, the second defines “character data” as being
everything else. To start with a simple case, in Example 2.8 the <h2>
start-tag and the </h2> end-tag are the markup and “The Fire Ser-
mon” is the character data.

Literals

[9] EntityValue ::= ’"’ ([^%&"] | PEReference | Reference)* ’"’

| "’" ([^%&’] | PEReference | Reference)* "’"

[10]AttValue ::= ’"’ ([^<&"] | Reference)* ’"’

| "’" ([^<&’] | Reference)* "’"

[11]SystemLiteral ::= (’"’ [^"]* ’"’) | ("’" [^’]* "’")

[12]PubidLiteral ::= ’"’ PubidChar* ’"’ | "’" (PubidChar - "’")* "’"

[13]PubidChar ::= #x20 | #xD | #xA | [a-zA-Z0-9] | [-
’()+,./:=?;!*#@$_%]

2.4. Character Data and Markup
Text consists of intermingled character data and markup. Markup takes
the form of start-tags, end-tags, empty-element tags, entity references,
character references, comments, CDATA section delimiters, document
type declarations, and processing instructions.

All text that is not markup constitutes the character data of the document.

80 CHAPTER 2 | DOCUMENTS

Example 2.8: Markup plus character data

<h2>The Fire Sermon</h2>

Other categories of markup listed in the first paragraph:

■ Empty-element tags such as .

■ Entity references such as < or &sss; and character
references such as < <. 4.1, “Character and
Entity References”, covers both of these in more detail.

■ Comment declarations such as <!-- check date --> that
the parser may or may not pass on to the application. See
2.5, “Comments”, for more on these.

■ CDATA sections, which have nothing but character data.
If a parser sees “<ingredient>” in a CDATA section, it
won’t treat it as the start-tag of an ingredient element; it
just treats it as the data characters “<ingredient>”. “<”
in a CDATA section is not a reference to an lt entity; it’s
just the data “<”. 2.7, “CDATA Sections”, describes
this further.

■ A document type declaration at the beginning of a
document identifies the document’s type and also
contains and/or tells where to find its element, attribute,
entity, and notation declarations. For example, the
document type declaration in Example 2.9, a slightly
modified version of the one used by the actual XML
specification, tells us that the document type is spec and
that the declarations are stored in a file called spec.dtd.

Example 2.9: Sample document type declaration

<!DOCTYPE spec SYSTEM "spec.dtd">

2 . 4 . C H A R A C T E R D A T A A N D M A R K U P 81

See 2.8, “Prolog and Document Type Declaration”, for
more on these.

■ Processing instructions are special instructions for the
application. See 2.6, “Processing Instructions” for more
information.

The remainder of 2.4, “Character Data and Markup”, describes
five general entities that are so important that you don’t have to
declare them because they’re automatically predeclared for you:
&, <, >, ' and ". See 4.6, “Predefined Enti-
ties”, for more on these.

This lists five situations where you can use the ampersand and left
angle bracket characters as they are (that is, the actual "&" and "<"
characters instead of their entity references & and <):

■ In the markup they were intended for: the ampersand as
the beginning of an entity reference, and the left angle
bracket as the beginning of a tag, comment, declaration,
or processing instruction.

■ Within a comment, where they won’t be treated as
markup, but as their plain old selves. For example, the
ampersand and less-than symbol in Example 2.10 won’t
cause any problems.

The ampersand character (&) and the left angle bracket (<) may appear in
their literal form only when used as markup delimiters, or within a com-
ment, a processing instruction, or a CDATA section. They are also legal
within the literal entity value of an internal entity declaration; see Section
4.3.2: Well-Formed Parsed Entities. If they are needed elsewhere, they
must be escaped using either numeric character references or the strings
“&” and “<” respectively. The right angle bracket (>) may be rep-
resented using the string “>”, and must, for compatibility, be escaped
using “>” or a character reference when it appears in the string “]]>”
in content, when that string is not marking the end of a CDATA section.

82 CHAPTER 2 | DOCUMENTS

Example 2.10: Ampersand and less-than symbol within a comment—no
problem

<!-- if a = 2 & b = 4, then a < b -->

■ In a processing instruction, where they’re no more trouble
than in a comment.

■ In a CDATA section, where they won’t be treated as
markup, because after all, that’s the point of CDATA
sections.

■ Inside an internal entity’s replacement text. For example,
if an ltref entity is defined with the declaration shown
in Example 2.11, the entity reference <ref; in a
document will actually be replaced by “<” instead of
by “<” because the ampersand in the entity declaration’s
literal entity value (the part between the quotes in the
declaration) was treated as a data ampersand and not as
the beginning of an entity reference. That’s why they call
it a “literal entity value”: because most characters in it are
treated literally.

Example 2.11: An ampersand in an internal entity’s replacement text

<!ENTITY ltref "<">

To include an ampersand or left angle bracket† as data in a docu-
ment it must be “escaped”. This term, which has been used in pro-
gramming languages for years, describes a way of letting markup
characters “escape” the parser so that it doesn’t treat them as markup.

† A “left angle bracket” is also known as a “less-than” symbol, which inspires the
lt abbreviation used in its entity reference, but the XML specification uses
the term “left angle bracket” when referring to the “<” character. Similarly, it
prefers the term “right angle bracket” to “greater-than character” for the “>”
character, despite the gt abbreviation used for its predeclared entity reference.

2 . 4 . C H A R A C T E R D A T A A N D M A R K U P 83

For the ampersand and left angle bracket, you use the same trick
that you would use to put the “ñ” in “España” or the “ä” in “bräu”:
use each character’s entity reference. For ñ, it’s ñ, for ä, it’s
ä, for &, it’s &, and for <, it’s <.†

The same applies to the right angle bracket, or “greater-than” (“>”)
character, although this is rarely necessary in a document’s character
data. A parser can’t mistakenly treat it as the end of a tag, processing
instruction, comment, or declaration because it isn’t recognized unless
there’s an unfinished markup string in progress. You do need the
greater-than symbol’s entity reference (>) after the characters “]]”
if your document just happens to need a “]]>” somewhere that isn’t
ending a CDATA section. See 2.7, “CDATA Sections” for more on
these.

Now we have a more specific definition of character data, or rather,
two definitions, depending on the context:

■ Between an element’s start- and end-tags (that is, in an
element’s content), any string where no markup begins.
You can’t have the end of markup (for example, a >
character to represent the end of a tag) unless you recently
began some markup, because the parser won’t even try to
treat > as the end of a tag unless it was looking for one.

† One nice feature of the & and < entity references is that they are
among the five special ones that don’t need to be declared unless you want to
maintain interoperability with pre-WebSGML SGML systems. 4.6, “Pre-
defined Entities”, provides further background on this.

In the content of elements, character data is any string of characters
which does not contain the start-delimiter of any markup. In a CDATA
section, character data is any string of characters not including the
CDATA-section-close delimiter, “]]>”.

84 CHAPTER 2 | DOCUMENTS

■ In a CDATA section, every thing is character data except
for the string]]>, which means “end of this CDATA
section”.

The ability to delimit strings with either single- or double-quotes
usually means that if you need one of these in your string you delimit
that string with the other. What if you need both in the string? Use
either to delimit and use the described entity references within the
string, as demonstrated in 2.12.

Example 2.12: Using the ' and " entity references to insert
quotes in an entity’s replacement text

<!ENTITY inferno "Dante's "Inferno"">

quot and apos are predefined entities, so there is no need to declare
them before referencing them unless you want to maintain interoper-
ability with pre-WebSGML SGML systems.

In the concise language of productions, production 14 tells us what
the text preceding it already told us: that character data is any string
of characters excluding the ampersand, the less-than symbol, and the
“]]>” string.

To allow attribute values to contain both single and double quotes, the
apostrophe or single-quote character (’) may be represented as “'”,
and the double-quote character (") as “"”.

Character Data

[14]CharData ::= [^<&]* - ([^<&]* ’]]>’ [^<&]*)

2 . 5 . C O M M E N T S 85

You can put them in document type declarations “at places allowed
by the grammar”—but where does it allow them? Production 28
shows that markup declarations (markupdecl in the production) can
be part of a document type declaration, and production 29 shows that
comments are one type of markup declaration.

As with the comments in computer programs, the processor may
just ignore their content. They’re often there as notes from the
authors to themselves or to others on their writing team, like the one
shown in Example 2.13.

Example 2.13: Sample comment within a par element

<par>The W3C approved XML as an official Recommendation
on February 10, 1998.<!-- double-check that date -->
</par>

Note how this example demonstrates what 2.4, “Character Data
and Markup” said about the < and & characters being allowed within
comments.

2.5. Comments
Comments may appear anywhere in a document outside other markup; in
addition, they may appear within the document type declaration at places
allowed by the grammar. They are not part of the document’s character
data; an XML processor may, but need not, make it possible for an appli-
cation to retrieve the text of comments. For compatibility, the string “--”
(double-hyphen) must not occur within comments.

Comments

[15]Comment ::= ’<!--’ ((Char - ’-’) | (’-’ (Char - ’-’)))* ’-->’

An example of a comment:

<!-- declarations for <head> & <body> -->

86 CHAPTER 2 | DOCUMENTS

The parser may or may not pass XML comments to the applica-
tion, but it must pass processing instructions, because that’s the pur-
pose of processing instructions: to represent special instructions for
the application.

The processing instruction in Example 2.14 tells a mythical
“stinker” application to generate a particular scent for five seconds.

Example 2.14: A sample processing instruction

<?stinker scent="newcar.sml" time="5 secs" ?>

A particular document may have processing instructions for sev-
eral different applications, so the processing instruction target
(PITarget), right after the opening <?, identifies the target applica-
tion for this processing instruction.†

2.6. Processing Instructions
Processing instructions (PIs) allow documents to contain instructions for
applications.

Processing Instructions

[16]PI ::= ’<?’ PITarget (S (Char* - (Char* ’?>’ Char*)))? ’?>’

[17]PITarget ::= Name - ((’X’ | ’x’) (’M’ | ’m’) (’L’ | ’l’))

PIs are not part of the document’s character data, but must be passed
through to the application. The PI begins with a target (PITarget) used to
identify the application to which the instruction is directed. The target
names “XML”, “xml”, and so on are reserved for standardization in this or
future versions of this specification. The XML Notation mechanism may
be used for formal declaration of PI targets.

† The XML Working Group considered requiring notation declarations for
each processing instruction target, but this would have effectively prohibited
the use of processing instructions in well-formed documents, which don’t
require any declarations. See 4.7, “Notation Declarations”, for more informa-
tion

2 . 7 . C D A T A S E C T I O N S 87

As we saw in 2.4, “Character Data and Markup”, to “escape” some
text is to identify it as something that should escape parsing. In other
words, if there’s anything in that text that would normally be consid-
ered XML markup, treat it as character data. After an XML parser sees
the <![CDATA[sequence that indicates the beginning of a CDATA
section and before it sees the]]> markup that indicates the end, it
assumes that all the characters it sees are character data—even any left
angle brackets and ampersand characters.

CDATA sections are popular for showing demonstration XML (or
SGML or HTML) markup within an XML document. The markup
can be shown as-is with no modifications, but the parser won’t con-
fuse the demonstration markup with actual document markup.

For example, in the document fragment in Example 2.15, an XML
parser won’t consider <center>, , or

2.7. CDATA Sections
CDATA sections may occur anywhere character data may occur; they are
used to escape blocks of text containing characters which would other-
wise be recognized as markup. CDATA sections begin with the string
“<![CDATA[” and end with the string “]]>”:

CDATA Sections

[18]CDSect ::= CDStart CData CDEnd

[19]CDStart ::= ’<![CDATA[’

[20]CData ::= (Char* - (Char* ’]]>’ Char*))

[21]CDEnd ::= ’]]>’

Within a CDATA section, only the CDEnd string is recognized as markup,
so that left angle brackets and ampersands may occur in their literal form;
they need not (and cannot) be escaped using “<” and “&”.
CDATA sections cannot nest.

88 CHAPTER 2 | DOCUMENTS

</center> to be actual markup within the document’s par element
because that text is inside a CDATA section.

Example 2.15: Use of CDATA section to "escape" img and center tags

<par>This HTML code will center the "Standard Stoppages" picture:
<![CDATA[<center>

</center>
]]> </par>

The spec tells us that, in CDATA sections, left angle brackets and
ampersands “need not (and cannot) be escaped using ‘<’ and
‘&’”. The strings < and & are just character data in a
CDATA section, just like everything else other than]]>.

“CDATA sections cannot nest” means that you can’t put one
CDATA section inside of another. If you think about how CDATA
sections work, nesting them doesn’t make any sense. For example, in
Example 2.16, the CDATA start at line 2 means “this is all character
data until the next]]>”.

Example 2.16: Attempted nesting of CDATA sections

1. This line isn’t in any CDATA section.
2. <![CDATA[
3. This is inside of a CDATA section.
4. <![CDATA[
5. This is inside of a nested one, which is illegal in XML.
6.]]>
7. This is outside of the inner nested CDATA section, but
8. still inside the outer one.
9.]]>
10. This line isn’t in any CDATA section.

The next]]> after line 2 is on line 6, so the attempt at starting a
new CDATA section on line 4 is just treated by the processor as more
character data. The real problem comes when the parser reaches line
9: if line 6 ended the CDATA section begun at line 2, what is line 9

2 . 7 . C D A T A S E C T I O N S 89

ending? Nothing, so the parser doesn’t know what to do—so it’s an
error.

One more handy thing about CDATA sections: a document with
no document type declaration has no information about which ele-
ments have carriage returns that really matter. That’s because it has no
element type declarations to reveal whether an element type has ele-
ment content (see 3.2.1, “Element Content”, for more on this).
CDATA sections become even more useful for these documents,
because they clearly indicate which parts of a document should have
their carriage returns and other white space left alone by the parser.

An example of a CDATA section, in which “<greeting>” and
“</greeting>” are recognized as character data, not markup:

<![CDATA[<greeting>Hello, world!</greeting>]]>

Tip Production 19 is the first production in the XML
specification that uses an XML keyword: “CDATA”. Note that it’s
written in upper-case in the production, with no option of writing it
in lower-case. This applies to all XML keywords—they have to be
written in upper-case.

90 CHAPTER 2 | DOCUMENTS

The second “Hello, world” example’s status as a legal XML docu-
ment demonstrates the potential simplicity (and much of the appeal)
of XML. It’s well-formed “but not valid” because a valid document’s
elements all conform to element type declarations in the document’s
DTD, and this document doesn’t even have an associated DTD. See
the upcoming specification paragraph beginning “The function of the
markup in an XML document…” for more on this.

This section of the XML specification describes markup that can
make a document even more useful, because it provides extra infor-
mation to a processing program about the document and its struc-
ture. The first “hello world” example above shows the first thing that
you “may, and should” add: an XML declaration, which tells the pro-
cessor “Hey! This is an XML document! It conforms to version 1.0 of
the XML specification!”

2.8. Prolog and Document Type Declaration
XML documents may, and should, begin with an XML declaration which
specifies the version of XML being used. For example, the following is a
complete XML document, well-formed but not valid:

<?xml version="1.0"?>
<greeting>Hello, world!</greeting>

 and so is this:

<greeting>Hello, world!</greeting>

2 . 8 . P R O L O G A N D D O C U M E N T T Y P E D E C L A R A T I O N 91

In case readers are tempted to assume that the next generation of
XML documents will begin with <?xml version="1.1"> or
<?xml version="2.0">, this rather legalistic paragraph warns them
not to make any such assumptions. In fact, it tells them not to assume
that there will even be another version of XML.

Imagine that you wrote an XML processing application, and now
it’s three years later and people are still using that program. Perhaps
the XML spec has been updated to version 1.2, and these users have
some new documents that take advantage of version 1.2’s new fea-
tures. What if they feed the new documents to your program that
they have grown to love over the years? How does your program react
to the use of these new features? There are two choices:

■ It may sputter and choke on the new parts of the
document.

■ It can first check for the XML declaration’s version
number and output a warning message if it equals
anything other than “1.0”.

The version number “1.0” should be used to indicate conformance to this
version of this specification; it is an error for a document to use the value
“1.0” if it does not conform to this version of this specification. It is the
intent of the XML working group to give later versions of this specification
numbers other than “1.0”, but this intent does not indicate a commitment
to produce any future versions of XML, nor if any are produced, to use
any particular numbering scheme. Since future versions are not ruled out,
this construct is provided as a means to allow the possibility of automatic
version recognition, should it become necessary. Processors may signal
an error if they receive documents labeled with versions they do not sup-
port.

92 CHAPTER 2 | DOCUMENTS

This is probably the most important paragraph in the whole speci-
fication. Markup identifies storage structure (entity structure) and
logical structure (a document’s elements and their relationship) and
specifies the attribute values that go with each element. By doing this,
it makes it easier for software to manipulate a document for different
purposes, thereby making the document a more valuable asset.

Software can do even more with documents if it knows their struc-
ture—that is, which elements are made up of which other elements
and the ordering of the component elements. A document type decla-
ration tells the processing program the definition of a document’s
structure, or, as database people say, the “schema”. By “logical con-
straints”, the specification refers to the definition of an element type’s
makeup, such as “a chapter element is made of a title element fol-
lowed by one or more section elements”. This is a constraint because
in a well-formed XML document that isn’t valid, like the first “hello
world” example above, you could put any elements you like between a
<chapter> start-tag and a </chapter> end-tag. Defined constraints
help a processing program know what to expect.

To “support the use of predefined storage units” is to provide a way
to reference files and other storage units from within a document. A
document can have many reasons for identifying an external file:

■ It may be additional marked-up XML content.

■ It may store a stylesheet for the document.

■ It may store a picture, sound, or audio file that should be
made available to anyone viewing the document.

The function of the markup in an XML document is to describe its storage
and logical structure and to associate attribute-value pairs with its logical
structures. XML provides a mechanism, the document type declaration,
to define constraints on the logical structure and to support the use of pre-
defined storage units. An XML document is valid if it has an associated
document type declaration and if the document complies with the con-
straints expressed in it.

2 . 8 . P R O L O G A N D D O C U M E N T T Y P E D E C L A R A T I O N 93

A document type declaration allows this by making it possible to
declare entities for use within a document.

A valid XML document declares a document type and conforms to
the logical and physical structure (that is, element and entity struc-
ture) defined for that document type. For example, the document in
Example 2.17 declares a document type of rpt. The document
instance comes after the document type declaration, which contains
the various element and entity declarations.

Example 2.17: Document with internal declaration subset

<?xml version="1.0"?>

<!DOCTYPE rpt [

<!ELEMENT rpt (title,par+)>

<!ELEMENT title (#PCDATA)>

<!ELEMENT par (#PCDATA)>

<!ENTITY auml "[auml]">

<!ENTITY disclaimer SYSTEM "disclaimer.xml">

<!ENTITY copyright SYSTEM "copyright.xml">

]>

<rpt><title>Snee: A White Paper</title>

©right;

<par>Here is the first paragraph. The German word

for "brew" is "bräu."</par>

<par>Here is the second paragraph.</par>

&disclaimer;

</rpt>

In Example 2.17, the document’s first element (rpt) doesn’t start
until after the end of the document type declaration.

The document type declaration must appear before the first element in
the document.

94 CHAPTER 2 | DOCUMENTS

The prolog can provide advance knowledge of the document: the
version of XML being used and the structure of the document. It can,
but doesn’t have to tell us either of these, because as production 22
shows us, the XML declaration and the DOCTYPE declaration are
both optional. A prolog is better off including both, because the XML
declaration and DOCTYPE declaration both provide valuable infor-
mation to the XML processor.

In the document in Example 2.18, everything except line 5 is the
prolog. In terms of production 22, the first line has the XMLDecl fol-
lowed by a comment, which according to production 27 qualifies as a
Misc. Next comes a doctypedecl at lines 2 through 4, and then
another Misc after the]> that closes the doctypedecl before the brief
document element on line 5. Although you can’t see anything after
line 4’s]>, look again at production 27 for Misc: the third and last
choice is S, for white space, and the carriage return at the end of line 4
counts.

Example 2.18: XML document with four-line prolog

 1. <?xml version="1.0"?><!-- sample XML document -->
 2. <!DOCTYPE verse [
 3. <!ELEMENT verse (#PCDATA)>
 4.]>
 5. <verse>She smoothes her hair with automatic hand</verse>

Because single or double quotation marks in a production enclose
text that must be included literally, production 24 above tells you that
Example 2.19 would be a legal VersionInfo, but it wouldn’t. The

Prolog

[22]prolog ::= XMLDecl? Misc* (doctypedecl Misc*)?

[23]XMLDecl ::= ’<?xml’ VersionInfo EncodingDecl? SDDecl? S? ’?>’

[24]VersionInfo ::= S ’version’ Eq (’ VersionNum ’ | " VersionNum ")

[25]Eq ::= S? ’=’ S?

[26]VersionNum ::= ([a-zA-Z0-9_.:] | ’-’)+

[27]Misc ::= Comment | PI | S

2 . 8 . P R O L O G A N D D O C U M E N T T Y P E D E C L A R A T I O N 95

production’s author meant (but failed) to show that single or double
quotes had to be included around the version number. The two cor-
rect versions are shown in Example 2.20.

Example 2.19: Incorrect VersionInfo markup

version=1.0

Example 2.20: Two possible correct versions of VersionInfo markup

version="1.0"
version=’1.0’

To show this, the production should have done something like the
revision shown in 2.21, essentially quoting the quotes to show that
they should be literally included.†

Example 2.21: Revised version of production 24

VersionInfo ::= S ’version’ Eq
 ("’" VersionNum "’" | ’"’ VersionNum ’"’)

In Example 2.17, the declaration “contains or points to markup
declarations”—it contains the markup declarations between the
square braces ([]). In 2.22, it points to the rpt.dtd file that has the
necessary declarations. The DTD file is shown in Example 2.23.

† The spec’s authors are aware of the error.

The XML document type declaration contains or points to markup decla-
rations that provide a grammar for a class of documents. This grammar is
known as a document type definition, or DTD. The document type decla-
ration can point to an external subset (a special kind of external entity)
containing markup declarations, or can contain the markup declarations
directly in an internal subset, or can do both. The DTD for a document
consists of both subsets taken together.

96 CHAPTER 2 | DOCUMENTS

Example 2.22: XML document with an external declaration subset

<?xml version="1.0"?>
<!DOCTYPE rpt SYSTEM "rpt.dtd">
<rpt><title>Snee: A White Paper</title>
©right;
<par>Here is the first paragraph. The German word
for "brew" is "bräu."</par>
<par>Here is the second paragraph.</par>
&disclaimer;
</rpt>

Example 2.23: rpt.dtd file referenced in Example 2.22

<!ELEMENT rpt (title,par+)>
<!ELEMENT title (#PCDATA)>
<!ELEMENT par (#PCDATA)>
<!ENTITY auml "[auml]">
<!ENTITY disclaimer SYSTEM "disclaimer.xml">
<!ENTITY copyright SYSTEM "copyright.xml">

These declarations provide a “grammar”: a body of rules about the
allowable ordering of this document’s “vocabulary” of element types.
We call this grammar a DTD, or “Document Type Definition”. It is
also common to refer to the declarations that define the grammar as
the DTD, which sometimes causes confusion.

When the rpt DTD is in a separate rpt.dtd file from the “Snee: A
White Paper” document, that DTD is an external entity just like the
disclaimer.xml and copyright.xml files that the disclaimer and
copyright declarations point to. (Compare this with auml, which is
an internal entity because its value of [auml] is right in there with
the declarations and not in a separate file.)

The rpt.dtd DTD file is described as a “special kind” of external
entity because unlike disclaimer.xml or copyright.xml it is an
external entity that holds a subset of a document type declaration. In
Example 2.17, all the document type declaration’s markup declara-
tions were in an internal subset—that is, they were part of the docu-
ment file (or rather, part of the document entity) itself.

2 . 8 . P R O L O G A N D D O C U M E N T T Y P E D E C L A R A T I O N 97

As the specification tells us, a single document type declaration can
both contain an internal subset and point to an external subset. For
example, if the rpt.dtd file only consisted of the three lines shown in
Example 2.24, the document shown in Example 2.25 would still be
fine. This is because it both points to the smaller rpt.dtd external
subset and also has the remaining declarations in its own internal sub-
set.

Example 2.24: Sample three-line rpt.dtd file

<!ELEMENT rpt (title,par+)>

<!ELEMENT par (#PCDATA)>

<!ENTITY auml "[auml]">

Example 2.25: Document referencing 2.24 along with its own internal
declaration subset

<?xml version="1.0"?>

<!DOCTYPE rpt SYSTEM "rpt.dtd" [

<!ELEMENT title (#PCDATA)>

<!ENTITY disclaimer SYSTEM "disclaimer.xml">

<!ENTITY copyright SYSTEM "copyright.xml">

]>

<rpt><title>Snee: A White Paper</title>

©right;

<par>Here is the first paragraph. The German word

for "brew" is "bräu."</par>

<par>Here is the second paragraph.</par>

&disclaimer;

</rpt>

In a case like this, the last sentence of the specification paragraph
above tells us that the “DTD for a document consists of both subsets
taken together”. More precisely, the DTD is declared by the markup
declarations in both subsets taken together.

98 CHAPTER 2 | DOCUMENTS

The document in Example 2.26 demonstrates all the categories of
markup declaration. Line 10’s element type declaration shows that a
tale element (the root element, as shown by the DOCTYPE declara-
tion on line 2) is made of a title element followed by one or more
par and illus elements.

The par element’s declaration is actually a string stored in the par-
decl entity by the declaration at line 8; the %pardecl; entity refer-
ence at line 12 has the effect of putting that par element type
declaration right there between the title element type declaration
on line 11 and the illus element type declaration on line 13. This
pardecl declaration is an example of a parameter entity, because
unlike a general entity that stores a piece of a document instance, a
parameter entity stores a piece of a document type declaration—in
this case, the par element type declaration.

Example 2.26: Sample document with all categories of markup
declaration

 1. <?xml version="1.0"?>
 2. <!DOCTYPE tale [
 3.
 4. <!NOTATION EPS PUBLIC "+//ISBN 0-201-18127-4::Adobe//
 5. NOTATION PostScript Language Ref. Manual//EN">
 6.
 7. <!ENTITY glow SYSTEM "img/glow.eps" NDATA EPS>
 8. <!ENTITY % pardecl "<!ELEMENT par (#PCDATA)>">
 9.
10. <!ELEMENT tale (title,(par|illus)+)>
11. <!ELEMENT title (#PCDATA)>
12. %pardecl;
13. <!ELEMENT illus EMPTY>
14. <!ATTLIST illus picfile ENTITY #REQUIRED>
15. <!-- End of document type declaration -->

A markup declaration is an element type declaration, an attribute-list dec-
laration, an entity declaration, or a notation declaration. These declara-
tions may be contained in whole or in part within parameter entities, as
described in the well-formedness and validity constraints below. For fuller
information, see Section 4: Physical Structures.

2 . 8 . P R O L O G A N D D O C U M E N T T Y P E D E C L A R A T I O N 99

16.]>
17.
18. <tale><title>What the Thunder Said</title>
19. <par>After the torchlight red on sweaty faces</par>
20. <illus picfile="glow"/>
21. </tale>

The other entity declaration, on line 7, declares the file glow.eps
in the img subdirectory as an entity to be used as needed in the docu-
ment. The illus element type’s attribute-list (ATTLIST) declaration
on line 14 declares one attribute for the illus elements: picfile, an
attribute whose attribute type of ENTITY shows that each illus ele-
ment must have a declared entity name as its value.

The document’s one illus element, on line 20, has a picfile
value of glow, which was the first entity to be declared in this docu-
ment’s document type declaration at line 7. This glow entity declara-
tion shows that it’s an EPS file, but what’s an EPS file? This brings us
to another category of markup declarations: notation declarations,
which identify the format of “unparsed” data (that is, data that the
processor shouldn’t parse as part of the XML text of this document).
Example 2.26’s notation declaration on lines 4 and 5 tells us where to
find the details on the PostScript format.

Chapter 4, “Physical Structures” and 4.1, “Character and Entity
References” describe the use of parameter entities; for more back-
ground on the other kinds of declarations, see 3.2, “Element Type
Declarations”; 3.3, “Attribute-List Declarations”; 4.2, “Entity Decla-
rations”; and 4.7, “Notation Declarations”.

100 CHAPTER 2 | DOCUMENTS

We’ve seen examples of all the doctypedecl components:

■ S, according to production 3, is made up of one or more
space characters.

■ In Example 2.25 earlier, SYSTEM "rpt.dtd" is an
example of an ExternalID.

■ Each line between Example 2.25’s square brackets (“[]”)
is a markup declaration, or markupdecl.

■ A PEReference is a parameter-entity reference, like
%pardecl; in Example 2.26.

The markupdecl production shows that it may be one of six things:
one of the four declaration types demonstrated by the tale example,
a comment, or a processing instruction (PI). Comments (described
further in 2.5, “Comments”) have no information for the parser, and
usually give background to a person reading an XML document. In
Example 2.26’s tale document, “End of document type declaration”
on line 15 is a comment.

Processing instructions contain data that the parser passes on to the
system, to the processing application, or to both. The very first line of
the tale document, which identifies the release of XML being used,
is a processing instruction. See 2.6, “Processing Instructions” for more
background.

Document Type Definition

[28]doctypedecl ::= ’<!DOCTYPE’ S Name (S ExternalID)? S?
(’[’ (markupdecl | PEReference | S)*
’]’ S?)? ’>’

[VC: Root Element
Type]

[29]markupdecl ::= elementdecl | AttlistDecl | EntityDecl
| NotationDecl | PI | Comment

[VC: Proper Declara-
tion/PE Nesting]
[WFC: PEs in Internal
Subset]

2 . 8 . P R O L O G A N D D O C U M E N T T Y P E D E C L A R A T I O N 101

A parameter entity’s replacement text is the resulting text after all
applicable replacements have been made (see 4.5, “Construction of
Internal Entity Replacement Text”, for more on this). In Example
2.26’s tale example, the parmodel parameter entity’s replacement
text is <!ELEMENT par (#PCDATA)>. (See 3.2.2, “Mixed Content”,
for more on “PCDATA”.)

“Nonterminals” are the pieces of a document whose structure is
shown by the specification’s productions; see “” for more on produc-
tions and nonterminals.

The final sentence of the paragraph above tells us that the upcom-
ing productions in the XML specification do not show you where you
might put parameter entity references. Instead, they assume that any
parameter entity references that may have been in the nonterminal
shown have had their replacement text substituted for them.

This is the first of many validity constraints in the XML specifica-
tion. Productions refer to these constraints (production 28 cites this
one) to show further conditions that the defined nonterminal must
meet for a parser to consider its document valid. (Well-formedness
constraints play a similar role in defining well-formedness.)

This validity constraint tells us that the Name in a document type
declaration (production 22) can’t be just any Name (2.3, “Common
Syntactic Constructs”, shows exactly what the specification means by

The markup declarations may be made up in whole or in part of the
replacement text of parameter entities. The productions later in this spec-
ification for individual nonterminals (elementdecl, AttlistDecl, and so
on) describe the declarations after all the parameter entities have been
included.

VALIDITY CONSTRAINT: Root Element Type

The Name in the document type declaration must match the element
type of the root element.

102 CHAPTER 2 | DOCUMENTS

“Name”). It has to be the element type name of the root element of
the document: that is, the single main element that encloses all of the
document’s other elements.

If a parameter entity has the beginning or end of a markup declara-
tion, it has to have the other one as well.

We’ll see in the next well-formedness constraint that there are cer-
tain conditions for storing and using a piece of a markup declaration
instead of an entire one. But even when meeting those conditions, the
piece being stored can never have the beginning of a markup declara-
tion without also including that declaration’s ending, or vice versa.
(We’ll also see examples after the next well-formedness constraint.)

When you use a parameter entity reference in a document type dec-
laration’s internal subset, it can’t represent merely a portion of a
markup declaration. It can when used in an external subset.

This is easier to see with an example. The ents.xml file shown in
Example 2.27 has an internal subset and refers to the external subset
stored in the file ents-ext.dtd shown in Example 2.28. (Both files
have the interesting parts described in comments and the illegal parts

VALIDITY CONSTRAINT: Proper Declaration/PE Nesting

Parameter-entity replacement text must be properly nested with
markup declarations. That is to say, if either the first character or the
last character of a markup declaration (markupdecl above) is
contained in the replacement text for a parameter-entity reference,
both must be contained in the same replacement text.

WELL-FORMEDNESS CONSTRAINT: PEs in Internal Subset

In the internal DTD subset, parameter-entity references can occur
only where markup declarations can occur, not within markup
declarations. (This does not apply to references that occur in
external parameter entities or to the external subset.)

2 . 8 . P R O L O G A N D D O C U M E N T T Y P E D E C L A R A T I O N 103

commented out so that the examples will parse properly; more
detailed descriptions follow ents-ext.dtd.)

Example 2.27: Parameter entities in internal and external subsets

 1. <?xml version="1.0"?>
 2. <!DOCTYPE a SYSTEM "ents-ext.dtd" [
 3. <!ELEMENT a (#PCDATA|b|c|d|e|f|g)*>
 4.
 5. <!-- The following two lines work fine. -->
 6. <!ENTITY % edecl "<!ELEMENT e (#PCDATA)>">
 7. %edecl;
 8.
 9. <!-- The following two declarations are illegal,
10. so they’re commented out and replaced by the
11. line after them. Note that ents-ext.dtd’s
12. equivalent of this, cdeclpart, works fine.
13. <!ENTITY % fdeclpart "f (#PCDATA)">
14. <!ELEMENT %fdeclpart;>
15. -->
16. <!ELEMENT f (#PCDATA)>
17.
18. <!ELEMENT g (#PCDATA)>
19.]>
20. <a>
21. How <c>about</c> <d>those</d>
22. <e>parameter</e> <f>entity</f> <g>rules.</g>
23.

Example 2.28: The ents-ext.dtd file referenced in Example 2.28

 1. <!ENTITY % bdecl "<!ELEMENT b (#PCDATA)>">
 2. %bdecl;
 3.
 4. <!-- The following two lines work fine, because
 5. they’re in an external declaration subset. -->
 6. <!ENTITY % cdeclpart "c (#PCDATA)">
 7. <!ELEMENT %cdeclpart;>
 8.
 9. <!-- The following two lines are illegal, so they’re
10. commented out and replaced by the line after them.
11. <!ENTITY % ddeclpart "<!ELEMENT d ">

104 CHAPTER 2 | DOCUMENTS

12. %ddeclpart; (#PCDATA)>
13. -->
14. <!ELEMENT d (#PCDATA)>

The first entity declaration in Examples 2.27 and 2.28 each store
an entire element type declaration in a parameter entity: edecl at line
6 of ents.xml and bdecl at line 1 of ents-ext.dtd. The lines imme-
diately following each of these have references to these entities, in
effect declaring the e and b element types whose declarations they
store.

Both files then try to declare and use a parameter entity that stores
several parameters of an element type declaration. ents-ext.dtd
declares cdeclpart as c (#PCDATA) at line 6 and uses it on the fol-
lowing line, and an XML parser has no problem with this. It would
have a problem with the ents.xml file’s declaration and usage of fde-
clpart at lines 13 and 14 because of the last paragraph of the spec
shown above: it’s referenced within a markup declaration in an inter-
nal subset. The cdeclpart parameter entity was not a problem
because it was referenced in an external subset.

The final declaration doesn’t work in the external subset, so the
internal subset doesn’t even try it: the ents-ext.dtd file’s ddeclpart
entity tried to store the beginning and a middle piece of the d element
type’s declaration at line 11. It didn’t work because it was declared ille-
gal by the “Proper Declaration/PE Nesting” validity constraint.
(Because it didn’t work, I commented it out.)

As the parenthesized final sentence of the specification paragraph
above tells us, the “PEs in Internal Subset” well-formedness constraint
doesn’t apply to parameter-entity references in an external parameter
entity or in a DTD external subset, because when an XML processor
is checking for well-formedness, it doesn’t have to bother with exter-
nal parameter entities and DTD external subsets.

2 . 8 . P R O L O G A N D D O C U M E N T T Y P E D E C L A R A T I O N 105

The first sentence here sums up what we saw in the Examples 2.27
and 2.28. The second sentence tells us that conditional sections are
OK in an external subset but not in an internal subset. Conditional
sections (described further in 3.4, “Conditional Sections”) let you eas-
ily change whether a parser ignores or parses a large block of text. For
example, changing the “INCLUDE” to “IGNORE” in Example 2.29
tells the parser not to parse anything between the second [and the
]]> that shows where the conditional section ends.

Example 2.29: An INCLUDE marked section

<![INCLUDE[
<!ENTITY sss "Shantih shantih shantih">
<!ENTITY tsepic SYSTEM "img/tse.eps" NDATA EPS>
]]>

Production 30 shows that an external subset consists of an optional
text declaration followed by an external subset declaration. Produc-
tion 31 shows that the latter is a combination of zero or more of the
markup declarations, conditional sections, and parameter-entity refer-
ences (with optional white space between them) that we’ve seen
throughout 2.8, “Prolog and Document Type Declaration”.

Like the internal subset, the external subset and any external parameter
entities referred to in the DTD must consist of a series of complete
markup declarations of the types allowed by the non-terminal symbol
markupdecl, interspersed with white space or parameter-entity refer-
ences. However, portions of the contents of the external subset or of
external parameter entities may conditionally be ignored by using the con-
ditional section construct; this is not allowed in the internal subset.

External Subset

[30]extSubset ::= TextDecl? extSubsetDecl

[31]extSubsetDecl ::= (markupdecl | conditionalSect | PEReference | S)*

106 CHAPTER 2 | DOCUMENTS

As explained in 4.3.1, “The Text Declaration”, a text declaration is
a processing instruction telling us the version of XML being used by a
particular external parsed entity.

This restates something that is implied by the “PEs in Internal Sub-
set” well-formedness constraint and demonstrated by the parameter
entities in Examples 2.27 and 2.28: references to parameter entities
that contain incomplete pieces of markup declarations are only legal
in external subsets.

As we saw in the “Status of this Document” section at the begin-
ning of the specification, a “Uniform Resource Identifier” (URI) is a
notation for naming resources on the Web. A “Uniform Resource
Locator” (URL) such as http://www.w3.org is one kind of URI.
Even a simple file name can be treated as a Relative URL that points
to a file in the same directory as the entity in which the Relative URL
is stored. URLs are a good way to identify system identifiers because
of the huge HTML world’s familiarity with them and because of the
ease with which a URL can point to both local and remote addresses.

So, it looks like all those file names we’ve been seeing in DOC-
TYPE declarations to identify the document type declarations’ exter-

The external subset and external parameter entities also differ from the
internal subset in that in them, parameter-entity references are permitted
within markup declarations, not only between markup declarations.

An example of an XML document with a document type declaration:

<?xml version="1.0"?>
<!DOCTYPE greeting SYSTEM "hello.dtd">
<greeting>Hello, world!</greeting>

 The system identifier “hello.dtd” gives the URI of a DTD for the docu-
ment.

2 . 8 . P R O L O G A N D D O C U M E N T T Y P E D E C L A R A T I O N 107

nal subsets (like hello.dtd in the sample above) were URIs all the
time.

Knowing this opens up a lot of possibilities. It means that your
document can point to a DTD somewhere else by using a URL, like
the one in Example 2.30.

Example 2.30: DOCTYPE declaration using a URL to identify a DTD

<!DOCTYPE min
 SYSTEM "http://www.snee.com/dtds/invoice.dtd">

This will be common for geographically widespread organizations
that want to retain a regular structure for their documents. Different
branch offices can point to a centrally maintained collection of DTDs
without needing to maintain and update their own copies.

An XML processor treats a relative URI as being relative to the
entity where it’s stored, not relative to the document entity ulti-
mately containing the reference. For example, say the catalog.xml
document entity in the grandfather directory references the
parts.xml file in the father subdirectory of grandfather as
father/parts.xml, and an entity declaration in parts.xml refer-
ences a file in son/bolts.xml. The XML processor will expect son
to be a child of the father directory and not a child of the cata-
log.xml document’s grandfather directory.

The declarations can also be given locally, as in this example:

<?xml version="1.0" encoding="UTF-8" ?>
<!DOCTYPE greeting [
 <!ELEMENT greeting (#PCDATA)>
]>
<greeting>Hello, world!</greeting>

 If both the external and internal subsets are used, the internal subset is
considered to occur before the external subset. This has the effect that
entity and attribute-list declarations in the internal subset take precedence
over those in the external subset.

108 CHAPTER 2 | DOCUMENTS

The internal subset pre-empts any attempts to re-declare the same
objects. In addition, entities declared in the internal subset can be ref-
erenced in the external subset.

Using the extdecl.dtd file shown in Example 2.31 as an external
subset, this precedence of internal declarations will cause an XML
processor to treat the document in Example 2.32 as if the rutle
entity had the value “Barry” and the single redecl element’s flavor
attribute had the default value of “lemon”.

Example 2.31: extdecl.dtd file with declarations pre-empted by Example
2.32’s internal subset declarations

<!ATTLIST redecl flavor CDATA "mint">
<!ENTITY rutle "Stig">

Example 2.32: Document with internal subset declarations pre-empting
external subset declarations

<?xml version="1.0"?>
<!DOCTYPE redecl SYSTEM "extdecl.dtd" [
<!ELEMENT redecl (#PCDATA)>
<!ATTLIST redecl flavor CDATA "lemon">
<!ENTITY rutle "Barry">
]>
<redecl>My favorite Rutle was &rutle;.</redecl>

An XML document can get by with no declarations at all. It can
also have declarations as part of an internal subset, and it can have
declarations in an external subset such as a separate DTD file. The
standalone document declaration, or SDDecl (used by production 23,

2.9. Standalone Document Declaration
Markup declarations can affect the content of the document, as passed
from an XML processor to an application; examples are attribute defaults
and entity declarations. The standalone document declaration, which may
appear as a component of the XML declaration, signals whether or not
there are such declarations which appear external to the document entity.

2 . 9 . S T A N D A L O N E D O C U M E N T D E C L A R A T I O N 109

among others) answers the question “can we get by using this docu-
ment without paying attention to the external declarations?”

For example, the document type declaration in Example 2.33 tells
us that, although the document may have declarations in an external
file, the document can be processed without them. What kind of dec-
larations are optional to document processing? The “Standalone Doc-
ument Declaration” validity constraint below lists the possible
conditions.

Tip Note that this question may not even be asked—the
SDDecl provides information in case it’s requested; it doesn’t
mandate behavior.

Standalone Document Declaration

[32]SDDecl ::= S ’standalone’ Eq (("’" (’yes’ |
’no’) "’") | (’"’ (’yes’ | ’no’)
’"’))

[VC: Standalone Document
Declaration]

In a standalone document declaration, the value “yes” indicates that there
are no markup declarations external to the document entity (either in the
DTD external subset, or in an external parameter entity referenced from
the internal subset) which affect the information passed from the XML
processor to the application. The value “no” indicates that there are or
may be such external markup declarations. Note that the standalone doc-
ument declaration only denotes the presence of external declarations; the
presence, in a document, of references to external entities, when those
entities are internally declared, does not change its standalone status.

110 CHAPTER 2 | DOCUMENTS

Example 2.33: XML declaration with a standalone declaration

<?xml version="1.0" standalone="yes"?>

An external declaration subset that exists but isn’t necessary is really
the exceptional case, which is why you can normally omit the standa-
lone document declaration. If there is an external subset and your
document needs it, the processor assumes that standalone="no" if
you don’t specify otherwise; if there is no external subset, the standal-
one value is moot.

By “converted algorithmically”, this means that, with no human
intervention, a document that depends on external declarations can
be mechanically converted to one that doesn’t. Basically, such a pro-
gram would just make a copy of the document with all the external
declarations moved to the internal subset (all the external declara-
tions, that is, not pre-empted in the internal subset). Doing so is
likely to be common, because storing documents as multiple interre-
lated pieces often makes sense from a document management view-
point, while delivering them from one computer to another
(“network delivery applications”) is easier using documents that are
self-contained units. These seemingly contradictory goals can both be
achieved on a network by using document servers that can convert

If there are no external markup declarations, the standalone document
declaration has no meaning. If there are external markup declarations but
there is no standalone document declaration, the value “no” is assumed.

Any XML document for which standalone="no" holds can be converted
algorithmically to a standalone document, which may be desirable for
some network delivery applications.

2 . 9 . S T A N D A L O N E D O C U M E N T D E C L A R A T I O N 111

non-standalone documents to ones that don’t need an external decla-
ration subset.

Now we get specific. Here are the four conditions in which a pro-
cessor needs access to the markup declarations badly enough that if
the declarations are in an external subset, the document being pro-
cessed can’t be considered standalone.

If the chapter element type has the attribute list definition shown
in 2.34, then a chapter element in a document using this declaration
has a flavor value of “mint” if its start-tag doesn’t list any attribute
values (<chapter>). A parser knows this from looking at the chapter
element type’s attribute list declaration, which specifies “mint” as the
default value. If the parser has to look in an external declaration sub-
set to find this declaration, then it’s not a standalone document entity.

Example 2.34: Attribute declaration with default value of "mint"

<!ATTLIST chapter flavor CDATA "mint">

If an XML processor finds the entity reference &cnote; in a docu-
ment, how does it know what it refers to? It does so by looking at the

VALIDITY CONSTRAINT: Standalone Document Declaration

The standalone document declaration must have the value “no” if any
external markup declarations contain declarations of:

● attributes with default values, if elements to which these attributes
apply appear in the document without specifications of values for
these attributes, or

● entities (other than amp, lt, gt, apos, quot), if references to those
entities appear in the document, or

112 CHAPTER 2 | DOCUMENTS

cnote entity’s declaration. If the processor has to look outside the
document entity in an external declaration subset to find this declara-
tion, then it’s not a standalone document. Exceptions are the entity
references used to represent the ampersand, less-than, greater-than,
apostrophe, and quotation characters, because an XML processor will
already know what these refer to. See 4.6, “Predefined Entities”, for
more on these.

Some attribute values can refer to entities, and an important job of
attribute value normalization is the resolution of these references. (See
3.3.3, “Attribute-Value Normalization”, for more on this.) As with
most other entity references, an XML processor needs their declara-
tions to find them in storage. Any need to look at an external declara-
tion subset for these means that the document is not a standalone
one.

An element type consisting of element content has only other ele-
ments as children, with no character data that is not part of any child
element (see 3.2.1, “Element Content”, for background on this).
Because the processor needs access to the element type declaration to
know whether it should treat an element as having only element con-

● attributes with values subject to normalization, where the attribute
appears in the document with a value which will change as a result
of normalization, or

● element types with element content, if white space occurs directly
within any instance of those types.

2 . 1 0 . W H I T E S P A C E H A N D L I N G 113

tent, any need to look to an external declaration subset for the decla-
ration means that the document is not a standalone one.

For example, production 28 has many places where S indicates
required white space. Because S means “one or more of the space, tab,
and line end characters”, the parser doesn’t care about the difference
between the DOCTYPE declaration shown in Example 2.35 and the
one shown in Example 2.36.

Example 2.35: DOCTYPE declaration with minimum required spaces

<!DOCTYPE rant SYSTEM "rant.dtd">

Example 2.36: DOCTYPE declaration with extra spaces in it

<!DOCTYPE rant
 SYSTEM "rant.dtd" >

To “set apart the markup for greater readability” refers to the prac-
tice of adding disposable spaces to make the marked-up document
easier to read. If a discography document type’s album element type is

An example XML declaration with a standalone document declaration:

<?xml version="1.0" standalone=’yes’?>

2.10. White Space Handling
In editing XML documents, it is often convenient to use “white space”
(spaces, tabs, and blank lines, denoted by the nonterminal S in this speci-
fication) to set apart the markup for greater readability. Such white space
is typically not intended for inclusion in the delivered version of the docu-
ment. On the other hand, “significant” white space that should be pre-
served in the delivered version is common, for example in poetry and
source code.

114 CHAPTER 2 | DOCUMENTS

declared as shown in Example 2.37 then album has element content
(see 3.2.1, “Element Content”, for more on this). A parser would not
care whether an album element looks like the one in Example 2.38 or
the one in Example 2.39.

Example 2.37: Declaration for album element shown in Examples 2.38 and
2.39

<!ELEMENT album (song+)>

Example 2.38: album element conforming to Example 2.37’s element type
declaration

<album><song>Hold My Hand</song><song>Number One</song>

<song>Love Life</song><song>Cheese and Onions</song></album>

Example 2.39: Another album element conforming to Example 2.37’s
element type declaration

<album>

<song>Hold My Hand</song>

<song>Number One</song>

<song>Love Life</song>

<song>Cheese and Onions</song>

</album>

The carriage returns and indentation in Example 2.39 don’t matter to
the XML processor.

Sometimes carriage returns and extra spaces are important, and you
don’t want the processor to throw them out. As examples, the specifi-
cation mentions poetry (see Example 2.40) and the source code of
programming languages. Consider the little Perl program shown in
Example 2.41.

2 . 1 0 . W H I T E S P A C E H A N D L I N G 115

Example 2.40: Poem excerpt with meaningful white space

<poem>

<verse>’What shall we ever do?’</verse>

<verse> The hot water at ten.</verse>

<verse>And if it rains, a closed car at four.</verse>

</poem>

Example 2.41: Perl program with meaningful white space

#!/usr/local/bin/perl

$i = 0;

while (<>) {

$i++;

print "$i: $_\n";

}

White space can be particularly important in program source code.
While the difference between one and three spaces after the keyword
“DOCTYPE” in a DOCTYPE declaration may not matter, such a
cavalier attitude toward the space beginning some program listing
lines would make the program difficult to read, and doing it to the
space between the quotation marks in the program in Example 2.41’s
print line would change how the program worked.

The XML Working Group debated long and hard about how XML
processors should handle white space characters, especially carriage
returns.† Issues such as completely blank lines and carriage returns
before and after comments make it difficult to lay out simple rules
about which white space to preserve and which to throw out. After all

† At one point in their e-mail discussion of white space and the Record
Start/Record End “characters” that delimit input lines, XML specification co-
editor Tim Bray wrote “At this point I’d rather write WordPerfect macros than
read another 10 postings about RS/RE”.

116 CHAPTER 2 | DOCUMENTS

the debate, the Working Group came up with something simple and
straightforward.

Instead of deciding which white space to throw out and which to
keep, an XML processor must pass it all to the application.

Earlier drafts of the specification assigned further responsibilities to
a validating XML processor: in addition to telling the application
which white space characters were in element content, it was sup-
posed to “signal to the application that white space in element con-
tent is not significant”. The deletion of this line removes the value
judgment on element content white space (like the carriage returns
after each song element in Example 2.39) while still requiring the
processor to identify element content white space for the application
to use or ignore as it wishes.

An XML processor must always pass all characters in a document that
are not markup through to the application. A validating XML processor
must also inform the application which of these characters constitute
white space appearing in element content.

A special attribute named xml:space may be attached to an element to
signal an intention that in that element, white space should be preserved
by applications. In valid documents, this attribute, like any other, must be
declared if it is used. When declared, it must be given as an enumerated
type whose only possible values are “default” and “preserve”. For
example:

 <!ATTLIST poem xml:space (default|preserve) ’preserve’>

The value “default” signals that applications’ default white-space pro-
cessing modes are acceptable for this element; the value “preserve”
indicates the intent that applications preserve all the white space. This
declared intent is considered to apply to all elements within the content of
the element where it is specified, unless overriden with another instance
of the xml:space attribute.

2 . 1 0 . W H I T E S P A C E H A N D L I N G 117

This is a nice way to tell the application which elements should
have their white space left alone. For most attributes that you define
for elements, you’ll end up specifying attribute values for each of the
elements of that type. By specifying a default value of “preserve” in
this attribute list declaration, the processor will treat every <poem>
start-tag as if it said <poem xml:space="preserve"> instead. You
can override this default by starting a poem with the tag
<poem xml:space="default">. (Don’t confuse this concept of
default attribute values with the permitted value of “default” for the
poem element type’s xml:space attribute.)

Speaking of overriding, the last sentence of the specification para-
graph above tells us that an xml:space value applies to all of an ele-
ment’s child elements and their descendants unless you specify
otherwise for a specific element. For example, the xml:space
attribute declaration shown for the poem element type in the spec’s
example above tells an XML processor to keep the extra spaces in its
child elements—for example, the verse elements of Example 2.42.
That is, unless verse had been declared with an attribute specifica-
tion overriding this xml:space setting as shown in Example 2.43.

Example 2.42: Poem excerpt whose verse space will be kept because of
poem element types xml:space

<poem>
<verse>’What is that noise?’</verse>
<verse> The wind under the door.</verse>
<verse>’What is that noise now? What is the wind doing?’</verse>
<verse> Nothing again nothing.</verse>

Example 2.43: Specifying xml:space value for verse element type

 <!ATTLIST verse xml:space (default|preserve) ’default’>

The root element of any document is considered to have signaled no
intentions as regards application space handling, unless it provides a
value for this attribute or the attribute is declared with a default value.

118 CHAPTER 2 | DOCUMENTS

If no such xml:space attribute was declared for the root element
(the main document element that contains all the other elements in
the document), you can’t assume anything about what the processor
will tell the application regarding the handling of spaces in that docu-
ment.

Don’t worry too much about xml:space, because an XML docu-
ment that will be formatted for display on a page or screen will prob-
ably have a corresponding stylesheet. Part of the point of a stylesheet
is to store far more sophisticated instructions about handling of white
space than the xml:space attribute ever could. Besides, xml:space
does not mandate any particular behavior, anyway; like the standal-
one document declaration, it merely passes a message along to be used
if the application is interested.

Most text processing programs treat a line of text as the basic unit
of a text file. This is part of the legacy of punch cards, which repre-
sented each line of a file with a single card. (It’s no coincidence that
before computers used the windows, icons, and mouse pointers of
graphical user interfaces, the old green text-mode computer screens
showed up to 80 characters on each line—that’s how many characters
each punch card stored.)

Different operating systems represent the end of a line in different
ways:

■ UNIX machines use a line feed (byte 10, or in
hexadecimal, “#xA”).

2.11. End-of-Line Handling
XML parsed entities are often stored in computer files which, for editing
convenience, are organized into lines. These lines are typically separated
by some combination of the characters carriage-return (#xD) and line-
feed (#xA).

2 . 1 1 . E N D - O F - L I N E H A N D L I N G 119

■ Macintoshes use a carriage return (byte 13, or “#xD” in
hex).

■ Windows PCs use a carriage return followed by a line
feed.

This is why, when a program such as an FTP utility copies files
from one computer to another, it often wants to know if they’re text
or binary—if the latter, they leave every byte alone, but for text files,
they need to know about any necessary line end conversions.

In developing the XML specification, some members of the Work-
ing Group questioned whether the concept of a “line” was still rele-
vant. After all, an XML document is a collection of elements, entities,
and declarations. If a document’s DTD has no xml:space attributes
declared anywhere, a document without a single carriage return or
line feed is functionally the same as a document with a line end char-
acter at the last word break before every eightieth character.

The Working Group decided to use the term “for editing conve-
nience”, because we still think of a document in terms of lines when
we interact with it on the screen, or for that matter, on paper. (Think
how often you use word processing commands that deal in terms of
lines: jump to the current line’s beginning, jump to its end, delete the
current line, and so forth.)

No matter which representation of a line end is encountered by an
XML processor, it passes along a single line feed character (ASCII
character 10) to the application. Therefore, the XML application—
unlike an FTP program—doesn’t have to worry about different possi-

To simplify the tasks of applications, wherever an external parsed entity or
the literal entity value of an internal parsed entity contains either the literal
two-character sequence “#xD#xA” or a standalone literal #xD, an XML
processor must pass to the application the single character #xA. (This
behavior can conveniently be produced by normalizing all line breaks to
#xA on input, before parsing.)

120 CHAPTER 2 | DOCUMENTS

ble representations. This simplifying of the application’s job is another
example of the effort to ease the development of small yet effective
applications.

XML’s country and language identifiers can give an application
important information that it needs for tasks like case conversion,
because two countries that speak the same language may have differ-
ent case conversion rules. (For example, an upper-case “è” is “E” in
Montreal but “È” in Paris.)

In eastern alphabets, knowing the specific language and country is
particularly important, because certain Unicode characters may be
used in Chinese, Japanese, or Korean language documents. Display-
ing them properly requires a knowledge of which language is in use.

Tip The processor still understands all three representations
of line ends, but it must always pass a single #xA (line feed)
character to the application.

2.12. Language Identification
In document processing, it is often useful to identify the natural or formal
language in which the content is written. A special attribute named
xml:lang may be inserted in documents to specify the language used in
the contents and attribute values of any element in an XML document. In
valid documents, this attribute, like any other, must be declared if it is
used. The values of the attribute are language identifiers as defined by
[IETF RFC 1766], “Tags for the Identification of Languages”:

2 . 1 2 . L A N G U A G E I D E N T I F I C A T I O N 121

The term “tag” in the title of the Internet Engineering Task Force’s
(IETF) Request for Comment (RFC) 1766 has nothing to do with
the XML sense of the term. This RFC defines a standard for identify-
ing a language using one or more words: the first identifies the lan-
guage and the optional second one identifies the country in which the
language is being spoken and optional additional information. The
language “tag” should be the two-letter code specified in ISO 639,
“Codes for the representation of names of languages”. For example,
“fr” is French, “en” is English, and “sa” is Sanskrit.

Language Identification

[33]LanguageID ::= Langcode (’-’ Subcode)*

[34]Langcode ::= ISO639Code | IanaCode | UserCode

[35]ISO639Code ::= ([a-z] | [A-Z]) ([a-z] | [A-Z])

[36]IanaCode ::= (’i’ | ’I’) ’-’ ([a-z] | [A-Z])+

[37]UserCode ::= (’x’ | ’X’) ’-’ ([a-z] | [A-Z])+

[38]Subcode ::= ([a-z] | [A-Z])+

The Langcode may be any of the following:

● a two-letter language code as defined by [ISO 639], “Codes for the
representation of names of languages”

● a language identifier registered with the Internet Assigned Numbers
Authority [IANA]; these begin with the prefix “i-” (or “I-”)

● a language identifier assigned by the user, or agreed on between
parties in private use; these must begin with the prefix “x-” or “X-” in
order to ensure that they do not conflict with names later standard-
ized or registered with IANA

Tip The langcode uses the two-letter language codes from
version 1 of ISO 639, not version 2’s three-letter codes.

122 CHAPTER 2 | DOCUMENTS

The optional second “tag” specifies the country using either an
abbreviation from ISO 3166, “Codes for the representation of names
of countries” (for example, “BE” for Belgium or “US” for the United
States) or some other code registered with the Internet Assigned
Numbers Authority (the group responsible for first-level domain
names like com, edu, and org). According to IETF RFC 1766, subse-
quent “tags” can be anything you like.

For example, if Celine Dion, Jean-Claude Van Damme, and
Johnny Halliday were each going to author XML essays on Proust’s
use of smell imagery, the French-Canadian ballad belter would use a
language code of fr-CA to indicate “Canadian French”, the muscles
from Brussels would use fr-BE to show that his essay was in Belgian
French, and aging rock star Johnny Halliday, being the most French
of the three, would use fr-FR. On the other hand, an XML docu-
ment about the “Code Talkers” (the Navajo U.S. Marines who trans-
mitted coded radio messages in the Pacific during World War II)
could use the language code i-navajo because the Navajo language
has an entry registered with the IANA. Or, if you and a client had
agreed to transmit documents in pig latin, and found no existing ISO
or IANA code for pig latin, you could make up and use your own, as
long as you preceded it with x- or X- (for example, x-pgl).

There may be any number of Subcode segments; if the first subcode seg-
ment exists and the Subcode consists of two letters, then it must be a
country code from [ISO 3166], “Codes for the representation of names of
countries”. If the first subcode consists of more than two letters, it must be
a subcode for the language in question registered with IANA, unless the
Langcode begins with the prefix “x-” or “X-”.

It is customary to give the language code in lower case, and the country
code (if any) in upper case. Note that these values, unlike other names in
XML documents, are case insensitive.

2 . 1 2 . L A N G U A G E I D E N T I F I C A T I O N 123

In the specification’s example above, the four l elements written in
German are children of the sp element. Because they have no
xml:lang attribute of their own to specify their language, an applica-
tion must treat them as if they had the xml:lang value of de, as their
parent does.

Note that the attribute declared default of #IMPLIED in that first
example makes that xml:lang attribute optional. For the poem,
gloss, and note examples, including this attribute in element start-
tags is also optional, but for a different reason: because defaults are
supplied. If no xml:lang value is specified for any poem, gloss, or
note elements in the document, they’ll each have the default value
shown in their declarations.

For example:

<p xml:lang="en">The quick brown fox jumps over the lazy dog.</p>
<p xml:lang="en-GB">What colour is it?</p>
<p xml:lang="en-US">What color is it?</p>
<sp who="Faust" desc=’leise’ xml:lang="de">
 <l>Habe nun, ach! Philosophie,</l>
 <l>Juristerei, und Medizin</l>
 <l>und leider auch Theologie</l>
 <l>durchaus studiert mit heißem Bemüh'n.</l>
 </sp>

The intent declared with xml:lang is considered to apply to all attributes
and content of the element where it is specified, unless overridden with an
instance of xml:lang on another element within that content.

A simple declaration for xml:lang might take the form

xml:lang NMTOKEN #IMPLIED

 but specific default values may also be given, if appropriate. In a collec-
tion of French poems for English students, with glosses and notes in
English, the xml:lang attribute might be declared this way:

 <!ATTLIST poem xml:lang NMTOKEN 'fr'>
 <!ATTLIST gloss xml:lang NMTOKEN 'en'>
 <!ATTLIST note xml:lang NMTOKEN 'en'>

