
2
This chapter is an excerpt from “SGML CD” by Bob
DuCharme (Prentice Hall PTR, Charles F. Goldfarb
Series on Open Information Management, ISBN 0-13-
475740-8). See www.snee.com/bob/sgmlfree for more
information, including links to all the software covered in
the book. See also www.snee.com/bob/xmlann for “XML:
The Annotated Specification” in the same series.

Copyright 1998 Bob DuCharme

1

EDITING SGML
DOCUMENTS WITH THE
EMACS TEXT EDITOR

Emacs (pronounced “ee-max”) started off in 1976 as a series
of “editor macros” (hence its name) written by Richard Mat-
thew Stallman for the TECO text editor on the DEC PDP-10
minicomputer. Since becoming its own program separate from
TECO, it has become extremely popular and widely used for
two main reasons: first, free versions of Emacs are available for
nearly every computer in existence; second, it's completely
customizable.

SGML CD

2

Many text editors and word processors claim to be “com-
pletely customizable.” Some let you reassign each key's pur-
pose, and they let you assign a series of operations to be
performed by one or two keystrokes or menu choices. Perhaps
this series of operations can have loops of repeated statements
and “if” statements that execute one or another group of
instructions based on whether a particular condition is true. If
so, the editor's proponents claim that its macro facility features
a “full-fledged programming language.” This is usually an
exaggeration, but not with Emacs.

Emacs's accompanying programming language is known as
“Emacs LISP” because it's based on LISP, a grand old program-
ming language that first gained fame for its use in artificial
intelligence work. (The connection between a text editor and
artificial intelligence? Manipulating text.) You don't need to
learn Emacs LISP to benefit from it; many Emacs users have
made their Emacs LISP programs available to anyone who
wants to run them, whether these other users understand the
syntax used to create them or not.

One collection of Emacs LISP programs called PSGML can
read and parse a DTD and document instance well enough to
turn Emacs into a menu-driven SGML editor. PSGML can:

• Insert required elements automatically.
• Help you find tagging mistakes.
• Display tags, data content, comments, and entity refer-

ences in different fonts or colors, making data content eas-
ier to read and markup easier to find.

• Let you enter and edit element attributes using a form with
helpful information about declared and default values.

• Enable access to all its important functions (and, when
inserting tags, lists of valid element types) on pull-down
menus when run on systems that support them.

And, thanks to its author Lennart Staflin, PSGML is as free as
Emacs!

EDITING SGML DOCUMENTS WITH THE EMACS TEXT EDITOR

3

In this chapter, we’ll first learn the basics of using Emacs with
any text file. Then, we’ll learn how to install PSGML and use it
to edit SGML documents.

<TIP> Emacs’s venerable age means that various terms may seem
odd to users accustomed to the terminology of current big-
selling software. This chapter explains the Emacs terms and
the equivalent terms on currently popular word processors
and editors when possible so that you’ll more easily under-
stand the vocabulary used in Emacs’s on-line help and other
available literature.

Getting Emacs
Emacs’s age and the free availability of its source code have

led to different versions being available. The standard-bearer at
any given time is the Free Software Foundation’s GNU Emacs;
the further an Emacs implementation deviates from the GNU
version, the greater the chance that PSGML won’t work with it.
I used the DOS EMX release 19.29.2 version of GNU Emacs
and the 19.30 Windows 95 version of GNU Emacs while test-
ing this chapter, and I used version 1.0 alpha 6 of PSGML.

All versions of PSGML work with release 19.19 or later of
GNU Emacs and release 19.9 or later of the XWindows off-
shoot of GNU known as Xemacs (formerly Lucid Emacs). As I
write this, the most recent version of GNU Emacs is 19.34.

<TIP> Staflin developed PSGML on a UNIX system, so if you have
problems running the latest version under your operating sys-
tem, try another release of PSGML. He makes several releases
available.

SGML CD

4

Editing Text Files with Emacs
Emacs often gives you a choice of several keystrokes and

commands to perform certain operations. This section covers
the minimum amount necessary to get by. Keep in mind that
many procedures described here have alternatives that you
may prefer.

Starting and Quitting Emacs

To start up Emacs, simply enter

emacs

at your operating system prompt. In a windowed environment,
you can set an icon to perform a similar command.

When Emacs is started with no filename as a parameter, it
often displays information about your version of Emacs (see
Fig. 2.1).

Figure 2.1. Opening Emacs screen in a windowed environment

EDITING SGML DOCUMENTS WITH THE EMACS TEXT EDITOR

5

The bottom line, which begins “For information about...” in
the illustration, is known as the “minibuffer.“ You and Emacs
enter information there to provide details about what each of
you is doing (or trying to do). Emacs puts messages there to tell
you things like the number of replacements a search-and-
replace operation performed; you use the minibuffer as a com-
mand line when necessary and enter text in response to any
questions Emacs asks you—for example, whether to save an
edited file when quitting.

Just above the minibuffer is the mode line, which tells you
the name of the buffer or file you're editing and other details
about it. It tells you, as a percentage of the file's total number of
lines, how far down in the file the displayed part is. For exam-
ple, if your cursor is two-thirds of the way down, it says “66%.”

The mode line also tells you, in parentheses, which major
mode the current buffer is in. Emacs major modes are states in
which certain commands are available and certain settings
have particular values. Minor modes generally describe a spe-
cific setting; for example, overwrite mode is a minor mode.

Customized major modes are available to edit the text of var-
ious programming languages and other kinds of text. In fact,
this chapter covers one of these major modes: the PSGML
mode.

When starting up Emacs, adding a filename to the emacs
command, like this,

emacs myfile.txt

tells Emacs to edit that file, whether it exists or not. If it doesn't
exist, Emacs creates an empty buffer with that file's name and,
the first time you tell Emacs to save the file, it creates that file
for you.

But what's a buffer? It's an area in the computer's memory
set aside for each document. Nearly all text editors, word pro-
cessors, and even spreadsheet programs set aside an area in

SGML CD

6

memory to work on a copy of each document that you edit.
This is why you lose your work if the computer loses power or
a program stops running before you save changes—you're
making changes to a copy of your document in the computer's
memory.

Although many programs use the concept of buffers, Emacs
uses the word more than most, so familiarity with the term
makes it easier to understand Emacs's on-line help and error
messages. Emacs buffers with files in them are usually named
after those files.

To end an Emacs session enter C-x C-c (Ctrl+X followed
by Ctrl+C—the next section further describes Emacs's nota-
tion for expressing combination keystrokes). If your version of
Emacs has menus, select Exit Emacs from the Files menu. If you
have no unsaved changes, Emacs returns you to your operating
system prompt or closes Emacs's window if you're using a win-
dowed operating system. If you have buffers with unsaved
changes, Emacs asks you the following for each one, filling in
the appropriate path and filenames:

Save file c:/pathname/filename.ext? (y, n, !, ., q, C-r or C-h)

It's asking “do you really want to leave Emacs, even though
you have copies of documents in memory with changes you
haven't saved onto the disk?” If you made changes that you
don't want to save, enter n to indicate “no.” Enter y to indicate
“yes,” and C-h to invoke the on-line help, which describes the
other possible answers to this prompt.

If you answer n to any “Save file?” query, Emacs gives you
one more chance to recant before finally quitting:

Modified buffers exist; exit anyway? (yes or no)

EDITING SGML DOCUMENTS WITH THE EMACS TEXT EDITOR

7

Emacs Commands
Some versions of Emacs offer pull-down menus that let you

take advantage of most of its features, and PSGML adds several
new menus to Emacs’s regular ones. When entering text and
moving your cursor around, menus are often slower than key-
stroke commands, but they’re handy for little-used features
whose keystrokes are difficult to remember. This chapter men-
tions each command’s corresponding menu choice when there
is one.

Usually, you tell Emacs what to do with a special keystroke.
For example, C-a (pronounced “Control A”—shorthand for
pressing your Ctrl key and the letter “A” together) means
“jump the cursor to the beginning of the current line.”

You execute many Emacs commands with a key known as
the “meta” key. Some early computers had a special key with
this label on it; it was used in combination with other keys just
as the Ctrl key is. With keyboards that have no “Meta” key
(which includes every keyboard I've ever seen) you use the
Escape or Alt keys.

A metakey combination is often written with an “M-” pre-
ceding the other key. For example, M-f refers to pressing the
Escape followed by the f. Note that, unlike the Ctrl key in
the C-f key combination, you press the f after pressing
Escape, not while pressing it. If your computer and version of
Emacs let you use the Alt key for metakeys, press it with the
other key just as you would press the Ctrl or Shift key simul-
taneously with another key.

Odd commands actually exist for which you press Escape
followed by a Ctrl key combination. Instead of writing this as
M-C-x for meta-control-x, Emacs documentation mercifully
refers to such a combination as ESC C-x. (If your version of
Emacs lets you use Alt as the metakey, you can press
Alt+Ctrl+x.) This chapter only describes one such keystroke.

SGML CD

8

Many Emacs commands require a pair of keystrokes. Either
or both of these may be a combination keystroke; for example,
C-x followed by C-s (more commonly written as C-x C-s)
saves the currently displayed file. Combination keystrokes are
often grouped so that all those with the same first keystroke
belong to a similar category of commands. For example, all
keystrokes beginning with C-x involve opening and saving files
or quitting Emacs, much like the choices on the File menu of
most windowed operating systems’ applications.

Sometimes the first of a pair of keystrokes displays a menu of
potential second keystrokes. For example, pressing C-h dis-
plays the following in the minibuffer:

C-h (Type ? for further options)

(As we'll see in the “Available On-line Help” section, press-
ing the ? key then gives you a description of your options.)
PSGML makes good use of this type of prompt so that you
don't need to memorize many keystrokes.

Emacs can do so much that there are not enough keystrokes
to go around, so it offers a command line where you can enter
commands. Press M-x (Escape followed by the x key) to dis-
play this command line in the minibuffer. This minibuffer com-
mand line is important to an add-in package such as PSGML
that adds customized features to Emacs for the benefit of a spe-
cialized audience.

For example, the goto-line command has no keystroke to
invoke it—we'll see in the section “Customizing Emacs” how
to assign one—but you can jump the cursor to a specific line
number by invoking the minibuffer command line with M-x,
entering goto-line in the minibuffer, and pressing Enter.
When Emacs prompts you with

 Goto line:

at the minibuffer, enter the line number and press Enter.

EDITING SGML DOCUMENTS WITH THE EMACS TEXT EDITOR

9

With all of these multi-step command possibilities, it’s good
to know that a keystroke is available to abort one that you
didn’t mean to start: C-g. For example, if you press C-x, Emacs
displays the following in the minibuffer to show that it’s waiting
for you to finish what you started:

C-x-

If you meant to press C-s instead of C-x, you couldn’t press
it now because C-x C-s is a very different Emacs command
from C-s.

If you actually follow through on a command that you didn’t
mean to execute, pressing C-_ (or selecting Undo from the Edit
menu) undoes the most recent command.

There’s one more common trouble spot to be aware of.
Heavy use of the Escape key means occasionally pressing it
twice in a row by accident. This invokes a command so eso-
teric that some UNIX versions of Emacs display the following:

You have typed ESC ESC, invoking disabled command eval-expression:
Evaluate EXPRESSION and print value in minibuffer.
Value is also consed on to front of the variable ’values’.

You can now type
Space to try the command just this once,
 but leave it disabled,
Y to try it and enable it (no questions if you use it again),
N to do nothing (command remains disabled).

Emacs is telling you “You just invoked an esoteric disabled
command that you probably didn't mean to use. Do you really
want to go through with this?” Enter n. Entering Esc Esc using
other versions of Emacs just shows

ESC ESC

in the minibuffer; enter C-g to abort this.

SGML CD

10

Moving Your Cursor Around
Most versions of Emacs support the regular cursor up, down,

left, and right keys, C-Left and C-Right to move a whole
word left or right, and the Page Up and Page Down keys for
scrolling a screenful of text at a time. If you have problems with
these keys—for example, if you use Emacs on a UNIX system
from a PC over a phone line and your telecommunications pro-
gram treats Page Down as the “start downloading a file” com-
mand—you can use the original Emacs cursor movement keys
from the days before computer keyboards had any cursor or
Page Up and Page Down keys. The following list includes the
Emacs commands invoked by these keystrokes because on-line
help and Emacs documentation sometimes refer to them by
these names instead of the keystrokes.

The following keystrokes are also handy for getting around
quickly:

C-p cursor up previous-line

C-n cursor down next-line

C-b cursor left backward-character

C-f cursor right forward-character

M-b word left previous-word

M-f word right next-word

M-v page up previous-page

C-v page down next-page

C-a beginning of
current line

beginning-of-line

EDITING SGML DOCUMENTS WITH THE EMACS TEXT EDITOR

11

Editing and Deleting Text

To enter text, simply move your cursor to the place where
you want the new text and start typing. If you create a brand
new document, the beginning of that document is the only
place to enter it.

If you type to the end of a line and continue typing, you may
see a backslash (“\”) appear as the last character of the line,
and then your typed text appears on the second line:

Returning to the Spouter-Inn from the Chapel, I found Queequeg there quite alon\
e; he having left the Chapel before the benediction some time.

The backslash shows that your text isn't really continuing on
the second line; the line is too long to appear on one line of
your screen (or window), so Emacs just wraps its appearance so
that you can see what you're typing.

Of course, you can press Enter at any time to start a new
line, but any decent word processor gives you the option of let-
ting it automatically insert a carriage return at the last possible
place before the cursor reaches the right margin. If you want
Emacs to do this, enter M-x to bring up its command prompt
and enter auto-fill-mode. This turns on the “Fill” minor
mode; the word “Fill” appears on the mode line to let you
know that it's on (see Fig. 2.2).

C-e end of cur-
rent line

end-of-line

M-< beginning of
file in cur-
rent buffer

beginning-of-buffer

M-> end of file in
current
buffer

end-of-buffer

SGML CD

12

Figure 2.2. Mode line showing that fill mode is on

What if you’re a programmer and you don’t want your text
editor to combine your program code into paragraphs? How do
you turn fill mode off? The same way you turn it on: by entering
auto-fill-mode at the M-x prompt. This command is known
as a toggle because entering it when the mode is on turns it off,
and entering it when the mode is off turns it on.

To reset the right margin (or, in Emacs parlance, the “fill col-
umn”), enter C-u followed by a number indicating the desired
width of the text and then C-x f.

To delete the character at the cursor, the Delete key should
work, but if not, C-d does the same thing. Your Backspace key
should also work.

<TIP> When using a UNIX system, especially from a PC running a
terminal emulation program, the Delete key is often the one
that deletes the character to the left of the cursor, and C-d is
your only option for deleting the character at the cursor. Or,
Backspace deletes the character before the cursor and the
Delete key does nothing, so that C-d is still your only option
for deleting the character at the cursor. I’ll refer to the key
that deletes the character at the cursor as the Delete key and
the one that deletes the character just before the cursor as the
Backspace key, regardless of which keys on your keyboard
perform these functions.

To delete from the cursor position to the end of the line,
press C-k (kill-line, a slightly misleading command name
because it kills the line from the cursor position to the end, not
the entire line).

EDITING SGML DOCUMENTS WITH THE EMACS TEXT EDITOR

13

One great feature of Emacs is its ability to re-justify para-
graphs. For example, imagine that you typed a paragraph of
text but then deleted a short sentence in the third line of that
paragraph, and now you have a big gap in your right margin:

He made me a present of his embalmed head; took out his enormous
tobacco wallet, and groping under the tobacco, drew out some thirty
dollars in silver; then spreading them
on the table, and mechanically dividing them into two equal portions,
pushed one of them towards me, and said it was mine.

With your cursor at any point in that paragraph, press M-q
(fill-paragraph) or select Fill from the Edit menu to adjust
the paragraph to look like this:

He made me a present of his embalmed head; took out his enormous
tobacco wallet, and groping under the tobacco, drew out some thirty
dollars in silver; then spreading them on the table, and mechanically
dividing them into two equal portions, pushed one of them towards me,
and said it was mine.

This is a typical feature in word processors, but not in text
editors, most of which are designed for programmers who deal
in lines instead of paragraphs. fill-paragraph combines all
the text between the last blank line before the cursor and the
next blank line after the cursor into a new paragraph. If Emacs
combines more text into a paragraph than you wanted, you can
undo it with the C-_ undo command.

A handy feature for adding a large amount of text is the abil-
ity to insert an existing text file’s contents at the cursor loca-
tion. To do this, press C-x C-i and enter the filename at the
minibuffer prompt:

Insert file: c:\pathname\

If you don’t want to insert a file from the current directory,
backspace over the pathname displayed and enter the appro-
priate one.

SGML CD

14

Saving Edits
To save the file you’re currently editing with the name

already assigned to it, enter C-x C-s (or select Save Buffer
from the Files menu) to invoke the save-buffer command. To
save it with a new name, enter C-x C-w (or select Save Buffer
As... from the Files menu) to invoke the write-file com-
mand. Emacs will ask you to enter the new name. If you like,
you can backspace over the displayed path name and enter a
new one:

Write file: c:/pathname/

Copying, Moving, and Deleting Blocks of Text
Emacs lets you copy, move, and delete user-defined blocks

of text with operations similar to the cutting, copying, and past-
ing of most popular word processors and text editors. However,
its roots in the bronze age of computers mean that the vocabu-
lary describing these operations may seem strange to the mod-
ern user, so a brief glossary is helpful:

region A block of text.

point The cursor’s location.

mark If before the point, the start of a region; if after,
the end of a region.

kill ring A temporary region of memory that stores text to
move or copy later on. On more modern word
processors this is often called the “clipboard,”
although a kill ring can hold multiple blocks of
cut or copied text.

kill-region The act of deleting a marked region and saving
the text in a temporary buffer in the kill ring. On
modern word processors this is known as cutting
a block into the clipboard.

EDITING SGML DOCUMENTS WITH THE EMACS TEXT EDITOR

15

copy-region Copying the marked region into the kill ring.

yank Copying the kill ring’s most recent addition to
the cursor location. Word processors using the
clipboard metaphor call this “pasting” the clip-
board's contents.

Choices on the Edit menu that implement these features
often use the more modern terminology.

You begin a copy, move, or delete operation by indicating
the block of text in question. With your cursor at the beginning
of the text, press C-space (or C-@, both for the set-mark-
command) to set the mark and then move your cursor to the end
of the region. Or, start with one of these two keystrokes at the
end of the region and move your cursor to the beginning.

Some versions of Emacs highlight the currently selected
region, but most don't, so it's easy to forget which text is
selected. This can lead to trouble with the delete command, so
the exchange-point-and-mark command (C-x C-x) makes
it easy to check the region's current boundaries by jumping the
cursor to the currently set mark and setting the point as the new
mark. Press the double key combination again to return your
cursor to its location before you exchanged the point with the
mark, and you can then continue where you left off. Essentially,
doing this command twice jumps your cursor to the region's
other boundary and back again so that you can quickly see
where that boundary is.

To delete (or “kill”) the region, press C-w or select Cut from
the Edit menu. If you deleted a region accidentally, “yank” it
out of the kill ring to put it back by pressing C-y. If you move
your cursor before yanking this text, yanking it moves the text
to the cursor's new location. (Another C-w removes the
recently yanked text if you put it in the wrong place.)

SGML CD

16

The menu equivalent of the yank command offers you a bit
more flexibility: choose Select and Paste from the Edit menu to
display a cascade menu of your last few yanked or copied
pieces of text. Select one of these and Emacs pastes it at the
cursor’s position.

You can copy a region to the kill ring by selecting Copy from
the Edit menu or by pressing the kill-ring-save keystroke:
M-w. This has no effect on the file you are editing, but once the
region’s text is in the kill ring, you can yank it all you want to
make multiple copies.

With word processors that use the clipboard metaphor, cut-
ting or copying text into the clipboard replaces anything that
was already there. If you cut or copy something with the inten-
tion of pasting it somewhere and then cut or copy something
else before you get around to the planned paste operation
(C-y), you’ve lost the original block of text. The Emacs yank-
pop command (M-y) lets you replace the most recently yanked
text with whatever was killed or copied into the kill ring before
the text that you just yanked. (The “pop” part of the name is
programmer's lingo for the operation performed on the data
structure holding the killed and copied text.) Pressing M-y
repeatedly continues to replace the recently yanked text with
earlier and earlier versions of killed or copied text; how early
you can go depends on the version of Emacs you're using.
Once you pop the oldest kill ring item, the next pop inserts the
most recent item saved in the kill ring. That's why it's called a
“ring.”

For example, let's say you want to move the “red” line in the
following text after the “blue” line.

yellow
red
black
white
blue
green

EDITING SGML DOCUMENTS WITH THE EMACS TEXT EDITOR

17

You move your cursor to the beginning of the “red” line and
press C-space to indicate the beginning of a block. Then, you
move your cursor to the beginning of the line below it and
press C-w to kill that marked line.

yellow
black
white
blue
green

As you move your cursor toward the “red” line's new loca-
tion, you realize that you didn't want the “white” line there at
all, so you kill it with the same keystrokes.

yellow
black
blue
green

You continue the cursor's journey to the “red” line's new
location and put it at the “g” in “green” because “red” will be
inserted before the “green” line and after the “blue” line. You
press C-y to yank the kill ring text to the cursor's location and
reel back in horror as you realize that you pasted the “white”
line there, not the “red” line:

yellow
black
blue
white
green

Before rending your clothing in anguish over your mistake,
you remember the yank-pop command, which yanks earlier
kill ring contents to the cursor location. You press M-y and the
“red” line replaces the mistakenly yanked “white” line.

SGML CD

18

yellow
black
blue
red
green

Searching for Text, Replacing Text

The most common Emacs search is known as an “incremen-
tal search.” Enter C-s and start typing your search target at the
minibuffer's I-search: prompt and notice how the cursor
jumps to the first place that matches your search target as you
type each character. For example, let's say we want to search
for the word “hazel” in the following. After the “h” is typed, the
cursor immediately jumps to the first character after the first
“h” it finds, as shown in Fig. 2.3.

Figure 2.3. Incremental search after the first character is entered

After typing the letter “a,” the cursor jumps to the “n” in
“than,” the first character after the first occurrence of “ha” (see
Fig. 2.4).

Figure 2.4. Incremental search after second character entered

Type a “z,” and the cursor jumps to the “e” after the “haz” in
“hazel,” as shown in Fig. 2.5.

EDITING SGML DOCUMENTS WITH THE EMACS TEXT EDITOR

19

Figure 2.5. Incremental search after third character entered

If you enter a series of characters that Emacs can’t find, it
tells you in the minibuffer. For example, if you type the letter
“x” at the end of the “haz” entered so far, the minibuffer mes-
sage tells you this:

Failing I-search: hazx

If you've found the string that you're looking for but want
Emacs to look for another occurrence of it, press C-s again.
When you've done enough searching, press Enter to stop the
incremental search.

Another handy key when searching is the Backspace key.
Using it to delete the most recent key in the minibuffer returns
the cursor to its most recent search hit. For example, if you
backspace over the “z” after Emacs found the word “haz” in
the above example, the cursor jumps back to the word “than,”
which has the first example of the “ha” string currently show-
ing in the minibuffer.

Searching backward is similar to searching forward except
that you begin an incremental reverse search with the key-
stroke C-r. For each character you add to the search string,
Emacs jumps the cursor to the file's most recent occurrence of
the current search string until you either enter a string it can't
find or press one of the keystrokes that tells it to stop looking
(for example, Enter). As with a forward search, the Backspace
key also deletes the most recent character in the search string,
jumping the cursor back to its location before you entered that
character.

SGML CD

20

Emacs has several commands that can perform a search and
replace operation. The most versatile is query-replace,
which you invoke with the M-% keystroke or the Query
Replace... choice of the Search menu. Press it and Emacs dis-
plays the following prompt in the minibuffer:

Query replace:

Enter the string to replace and press Enter. For example,
let's say you entered “my fault.” The minibuffer then asks you
to enter the replacement string:

Query replace my fault with:

Enter the replacement string (we'll change “my fault” to
“your fault”) and press Enter. Emacs then tries to find the
search string. If it doesn't, it displays the message Replaced 0
occurrences in the minibuffer; if it does, it moves the cursor
to the first occurrence and displays the following prompt:

Query replacing my fault with your fault: (? for help)

Enter ? to display a list of options. The following shows the
most important ones:

y Replace this entry and search for the next one.
The space bar has the same effect.

n Don't replace this entry, but skip to the next one.

q Don't replace this entry. Stop looking.

! Replace all remaining occurrences of the search
string, no questions asked.

EDITING SGML DOCUMENTS WITH THE EMACS TEXT EDITOR

21

Editing Multiple Files
The C-x C-f command invokes the find-file command.

Entering it (or selecting Find File... from the File menu) tells
Emacs “Edit the file whose name I'm about to give you. If it's
already in a buffer, show me that buffer; if it's not in a buffer
but on a disk, read it into a buffer where I can edit it; if it's not
there either, create a buffer that I can treat as a new file.” In the
minibuffer, Emacs then asks you for the name of the file to edit,
substituting your current directory for pathname:

Find file: c:\pathname\

If the file you want is in that directory, just enter its name.
Otherwise, edit the pathname by deleting characters with the
backspace key or adding new characters before entering the
filename. If you can't remember the filename, we’ll see how to
list the files in the current directory in a separate window and
pick one from the list using Emacs's “completion” features
described in the next section.

To switch from one active buffer to another, enter C-x b for
the switch-to-buffer command. Emacs prompts you for the
buffer's name, which is the same as the name as the file in that
buffer. As with find-file, you can use the “completion” fea-
ture if you don't know the current buffer names.

All buffers share the same kill ring, which makes it easy to
copy and move text between them. For example, to move a
paragraph from file1.txt to file2.txt, you would:

1. Mark a region of text in file1.txt.
2. Kill it with the C-w keystroke.
3. Display the other file by entering C-x b and answering the

Switch to buffer: minibuffer prompt with file2.txt.
4. Move your cursor to the insertion point in file2.txt

with the cursor movement keys or by using C-s to search
for a string that you know is near the insertion point.

SGML CD

22

5. Insert the text from the kill ring with C-y.

While viewing a particular buffer, pressing C-x C-s tells
Emacs to save the file in that buffer. It’s not unusual when you
have several files open in different buffers to save the current
one and then try to quit Emacs without saving the others; that’s
why Emacs displays a reminder if you enter C-x C-c to quit
when you still have unsaved work.

Completion
When Emacs is waiting for you to enter information and

you’re not sure what to enter, or you don’t feel like typing in all
those keystrokes, Emacs can do a lot of the typing for you.

For example, the last section showed you how C-x C-f can
tell Emacs to open a new buffer for a new file. Let’s say you
want to edit a file on your hard disk’s current directory and you
remember that the filename begins with the letters “apr” but
can't remember the rest. After you press C-x C-f and enter
“apr” in the minibuffer, pressing the Tab key tells Emacs to fill
in as many of the remaining letters as possible. If only one file
begins with these letters, it finishes the file's name; if more than
one such file exists, Emacs fills in as many as it can. For exam-
ple, if there are files named april95.txt and april96.txt
in the current directory, and you enter “apr” and press Tab,
Emacs adds the “il9” because the two files that begin with
“apr” both begin with the letters “april9.” It also splits the win-
dow and lists the files whose names fit this pattern, as shown in
Fig. 2.6.

You can then type in the remainder of the name, or, as the
new window tells you, you can move your cursor to the name
you want and press “Ret” (the Return or Enter key). We'll see
in the next section how to move your cursor from one window
to another and how to delete a window when you're done with
it.

EDITING SGML DOCUMENTS WITH THE EMACS TEXT EDITOR

23

Figure 2.6. Possible completions to the sample find-file command

Completion is used for entering more than just filenames.
When entering a long Emacs command such as add-change-
log-entry-other-window at the M-x prompt, you can type a
few characters, press Tab, type a couple more to make it more
unique, press Tab again, and continue with this process until
you have the complete command name. Completion also helps
you to enter buffer names after entering C-x b to switch to a
buffer whose name you can’t remember, as well as variable
names, which we'll learn about in the “Customizing Emacs”
section.

Using Multiple Emacs Windows
You can split the Emacs screen into two or more regions

known as “windows” to look at multiple buffers at once. (Don't
confuse these with the windows used for the operating system

SGML CD

24

interface in Microsoft Windows, UNIX X-Windows, or the
Macintosh—this doesn't create new independent screen rect-
angles but instead splits the current one.) Sometimes Emacs
splits the screen automatically to simultaneously show you the
currently active buffer as well as some other information, such
as on-line help or a list of potential completions to text you've
entered. Even if you have no plans to split the screen into two
windows yourself, you should learn the commands that manip-
ulate multiple windows in order to give you better control over
the Emacs environment when Emacs splits its default main
screen for one of these reasons.

Entering C-x 2 (or selecting Split Window from the Files
menu) splits the Emacs screen horizontally into two windows.
Both windows display the buffer that you were looking at when
you pressed C-x 2; all commands that we've seen for specify-
ing files and buffers to work on will then apply to the window
with the cursor in it.

So, to look at two different files at once, you would:

1. Display one of the files using a method we've already
seen.

2. Enter C-x 2 to split the screen.
3. Enter C-x C-f to retrieve the second file into one of the

two windows.

When the screen is divided into multiple windows, the key-
stroke C-x o (note that this uses the letter “o,” not the digit
zero—as we'll see, C-x 0 has a very different effect) moves the
cursor to the next, or “other,” window. If there is something in
the minibuffer, this counts as a little window. So, when viewing
Fig. 2.6, which shows the cursor in the minibuffer, pressing
C-x o moves the cursor to the top window, as shown in
Fig. 2.7.

EDITING SGML DOCUMENTS WITH THE EMACS TEXT EDITOR

25

Figure 2.7. Moving the cursor to the next window with the other-
window command

Pressing it again moves it to the lower window (see Fig. 2.8).

Pressing it a third time moves it back to the minibuffer.

Now we know how to create and navigate among these win-
dows. How do we get rid of them? The C-x 0 keystroke exe-
cutes the delete-window command, which deletes the
cursor’s current window. (This is the C-x zero command men-
tioned earlier, not to be confused with C-x o.) Think of it as
“zeroing out” the cursor's current window.

SGML CD

26

Figure 2.8. Moving to another window with the other-window
command

The C-x 1 keystroke (and the One Window choice of the
Files menu) executes the delete-other-windows command,
which expands the cursor’s current window and deletes the
others. Think of it as “make this window the only one” to help
remember it more easily.

If any deleted windows held file buffers, those buffers are
still around, they're just not displayed—you can always switch
to another with C-x b.

A similar keystroke is available when you want to switch
buffers but don't remember their names: C-x C-b, the list-
buffers command. If necessary, this splits the current window
and lists the currently existing buffers in the other window.
Press C-x o to move your cursor to this list, move it to the

EDITING SGML DOCUMENTS WITH THE EMACS TEXT EDITOR

27

name of the buffer you want, and press the number 1 to display
that buffer in the window where the cursor was when you first
pressed C-x C-b.

The Buffers menu also lists the current buffers; select one to
put that buffer in the cursor’s window.

Customizing Emacs
Emacs lets you store a series of keystrokes for later playback,

which is handy when you’re tired of repeatedly pressing the
same series of keystrokes. It also lets you customize the envi-
ronment by writing programs in the Emacs LISP programming
language. Even if you’ve never used LISP or one of its descen-
dants (such as Scheme or CLOS), you can easily make minor
changes to other users’ programs to gain greater control over
your own use of Emacs.

Recording and Executing Macros
Emacs offers a keyboard macro facility that lets you record

and play back keystrokes. You begin and end your “recording”
of the keystrokes by entering C-x followed by one of the paren-
theses characters. The C-x (keystroke, for start-kbd-macro,
tells Emacs to record the upcoming keystrokes, and C-x), for
end-kbd-macro, tells Emacs to stop recording.

Pressing C-x e executes the call-last-kbd-macro com-
mand. This executes the macro most recently defined with
C-x (and C-x).

If you create a macro and want to create another without losing
the ability to execute the first one, you can name the first one by
pressing M-x and entering the name-last-kbd-macro command
at the minibuffer prompt. After you press Enter, Emacs asks you for
the macro's name; if you name it testmacro, you can then record
and use another macro and still invoke testmacro the same way
you would use any other Emacs command: by entering it at the M-x
minibuffer prompt.

SGML CD

28

As soon as you quit Emacs, you lose the most recently
named macro and any other named macros saved during that
session. What if you want to define macros to use perma-
nently? At the end of this section, after we’ve covered the
basics of the .emacs customization file, we’ll see how to add
named macros so that you can use them in the future.

Emacs LISP
More serious Emacs customization is done by writing Emacs

LISP programs. These don’t have to be complicated. For exam-
ple, assigning an Emacs command to a particular keystroke can
be done with one line of LISP code.

In the LISP programming language, as with C, everything is
defined as a function. You can write your own functions or use
collections written by other people known as “packages” to
customize Emacs's behavior. PSGML is a LISP package, but
before we get to that, we'll start with a simpler collection of
LISP functions: the automatic startup functions stored in the
.emacs (pronounced “dot emacs”) file.

<TIP> Because DOS won’t allow filenames that begin with a period,
DOS and 16-bit Windows versions of Emacs usually use the
name _emacs for the file of automatic startup functions.

While the syntax of the .emacs functions may seem odd to
someone with no experience in LISP or its descendants, you
can write your own LISP functions by merely taking others and
changing the crucial parts. For example, let's say I see the fol-
lowing line in someone's .emacs file to set M-g to invoke the
goto-line command:

(global-set-key "\eg" ’goto-line) ; M-g prompts for line number to enter

EDITING SGML DOCUMENTS WITH THE EMACS TEXT EDITOR

29

The goto-line command is normally not invoked by (or
“bound to,” as the Emacs types say) any key, so that you need
to enter M-x and then goto-line at the minibuffer command
prompt in order to go to a specific line by its number. Program-
mers and SGML people often run programs that identify prob-
lems in program and data files by their line numbers, so they
need to use Emacs's goto-line command so often that it
would be easier to just press a key or two to invoke it.

Copy the global-set-key line shown above into your
.emacs file and quit and restart Emacs. From that point on,
pressing M-g displays a Goto line: prompt in the minibuffer,
which waits for you to tell Emacs where to put the cursor.

Another command popular with PC word-processor users is
overwrite-mode, which toggles Emacs between insert and
replace modes. In other words, entering this command at the
M-x prompt puts Emacs in replace mode if you were already in
insert mode, so that typed characters replace existing charac-
ters at the cursor, or it puts you in insert mode if you're already
in replace mode, so that newly typed characters move any
existing characters on the cursor's right further to the right.

PC users are accustomed to this toggling behavior from their
Insert key and don't necessarily want to bring up a command
line and enter a 14-letter command. It would be nice to define
a LISP function in the .emacs file that assigns this command to
the M-i keystroke. Let's look closer at the line that assigned the
goto-line command to the M-g keystroke and see which
parts to keep and which we can change in order to create a
LISP function that gives M-i the behavior we want.

LISP functions are usually in the form of a list (the name
actually means “List Processor”) within parentheses. The first
item in the list is the function name; the number and role of the
remaining items depend on which function starts the list.

The Emacs LISP global-set-key function sets a particular
key to perform an Emacs function. (Non-global versions specify
key assignments that only work in certain modes.) This takes

SGML CD

30

two parameters: the key to set and the command to assign to it.
You’ll rarely assign a command to a single letter or number on
your keyboard; as with most Emacs commands, these new
commands are invoked by some combination of a letter or a
number with the Escape or Ctrl key.

To assign a key to be pressed after the Escape key, precede it
with a backslash and the letter “e.” For example, we saw that
binding M-g to invoke the goto-line command meant assign-
ing that command to the “\eg” keystroke combination.

Also, remember to put an apostrophe (or, in programmers’
parlance, a “single quote”) before the command name being
assigned to the keystroke. In LISP, this makes the command
name a symbol. Don't worry about LISP symbols unless you
want to get heavily into LISP; just remember to include it when
assigning commands to keystrokes.

One more thing: when Emacs executes LISP code, it ignores
a semicolon and anything after it, so use these to insert com-
ments. This makes it easier to remember why you wrote what
you did, and it also makes it easier to learn from other Emacs
LISP programs out there—assuming the programs have been
commented.

So, putting this all together, we can set up the M-i keystroke
to toggle between insert and replace mode by adding the fol-
lowing line to our .emacs file:

(global-set-key "\ei" ’overwrite-mode) ; toggle overwrite mode

Assigning a command to a Ctrl key combination requires a
new Emacs trick: the quoted-insert command, entered with
C-q. This tells Emacs to treat the next character you type as a
character to be inserted into the buffer, even if Emacs normally
treats it as a command. So, while C-a normally means “move
my cursor to the beginning of the current line,” pressing
C-q C-a means “insert the C-a character at the cursor posi-

EDITING SGML DOCUMENTS WITH THE EMACS TEXT EDITOR

31

tion.” It shows up as ^A, but most programs that do anything
with this file treat it very differently from something entered
with the “^” character (Shift 6) followed by the letter “A.”

This includes Emacs. To put this to use, let's assign the C-t
keystroke to execute the kill-word command, which deletes
text from the cursor's position to the next word ending. (This
shows my age—I got used to this command when Wordstar
was the most popular PC word processor and “32-bit” meant a
refrigerator-sized minicomputer. M-d is the built-in Emacs key-
stroke that kills the next word.)

Add the following line to your .emacs file to make this com-
mand available:

(global-set-key "^T" ’kill-word) ; enter ^T here with C-q C-t

Setting Emacs Variables to Control Its Behavior
Another common reason to edit your .emacs file is to

change the value of variables. Programs use variables to keep
track of values, and you can change the behavior of your copy
of Emacs by changing the value of its built-in variables.

Some variables keep track of numeric values. For example,
next-screen-context-lines keeps track of how many lines
of a given screen remain when you press a Page Up or
Page Down key. When it's set to 2, the bottom two lines
become the top two lines when you page down, and the top
two lines become the bottom two when you page up. To check
a variable's value, enter C-h v and then the variable's name.

You can change the value of such variables by entering M-x
and then entering set-variable at the Emacs command line.
Press Enter, and Emacs prompts you for the name of the vari-
able to set. After entering its name and pressing Enter again,
Emacs prompts you for the variable's new value.

SGML CD

32

This is a lot of steps, especially for a variable with a name as
long as next-screen-context-lines. If you want to set this
value to 1 every time you start up Emacs, use the Emacs LISP
setq function to automate this by adding the following line to
your .emacs file:

(setq next-screen-context-lines 1)

Not all variables hold numeric values; some, like load-
path, hold strings of characters. load-path is a list of subdi-
rectories in which Emacs looks when you tell it to load a file of
LISP code. As we'll see in the section “Editing SGML Docu-
ments with Emacs and PSGML,” you'll need to reset load-
path for Emacs to find PSGML.

Many Emacs variables are Boolean. A Boolean variable
(named for the 19th-century British mathematician George
Boole) is like a switch that can be turned on or off, and while
beginning programmers rarely use them in their programs, the
ability to set Emacs's many Boolean variables gives you a great
deal of freedom in customizing its behavior. For example, your
copy of Emacs may or may not do case-sensitive searches
when you execute an incremental search with C-s or C-r. (A
case-insensitive search finds the character strings “HELLO” or
“hello” when you tell it to search for “Hello”; a case-sensitive
search only finds an exact match.)

You can control case sensitivity by setting the case-fold-
search variable. To tell Emacs to ignore case when searching,
add the following line to your .emacs file:

(setq case-fold-search t)

To set your default to case-sensitive searching, set the vari-
able off with this line:

(setq case-fold-search nil)

EDITING SGML DOCUMENTS WITH THE EMACS TEXT EDITOR

33

Other programming languages use “true” and “false” or 1
and 0 to turn Boolean variables on and off. Emacs uses nil to
turn Boolean variables off for reasons that have more to do
with LISP than with Emacs; the t is just a convention, because
anything other than nil assigns a true value. (This is similar to
the C-related languages' use of 0 to represent “false” and any
other number to represent “true.”) Remember this when read-
ing Emacs documentation, which rarely tells you to set a vari-
able to “t”—it's more (mathematically) proper because it tells
you to set a Boolean variable to nil for one kind of behavior or
to a “non-nil” value otherwise. Use t for this.

To store a keyboard macro definition in your .emacs file so
that you can use that macro without ever needing to redefine it,
the insert-kbd-macro command adds the Emacs LISP equiv-
alent of the macro definition to the current buffer. Let's look at
an example.

A handy macro for SGML people is one that speeds the entry
of comments. To define a macro, first enter C-x (to tell
Emacs to start recording a macro, and then enter the characters

<!-- -->

followed by four cursor-left keystrokes, which put the cursor
where you can start typing the comment. Next, enter C-x) to
tell Emacs to stop recording.

Name your macro by pressing M-x and entering name-
last-kbd-macro at the prompt in the minibuffer. A good
name would be sgml-comment.

Next, edit your .emacs file, or its equivalent in the operating
system you're using, and move your cursor to a blank line
where you want the macro definition. Press M-x to bring up the
minibuffer prompt and enter the insert-kbd-macro com-
mand. When Emacs asks which macro to insert, type sgml-
comment. You'll see the following appear at the cursor:

(fset ’sgml-comment [?< ?! ?- ?- ? ? ?- ?- ?> left left left left])

SGML CD

34

Now you have a new command in your Emacs environment
called “sgml-comment.” Since typing this at the command line
is no easier than typing out “<!-- -->” every time you want to
enter a comment, you'll want to assign this new command to a
keystroke, so add the line

(global-set-key “̂ Co” 'sgml-comment)

to assign it to the C-c o keystroke. (I chose this because “c”
and “o” are the first two letters in the word “comment” and
because this keystroke combination is not bound to any exist-
ing Emacs function. Remember to enter C-q before entering
C-c so that the C-c character is inserted into your .emacs file.
Enter the “o” as you would normally.) Make sure to save your
.emacs file. Quit out of Emacs, start it up again with a test file,
and enter C-c o to see your new saved macro in action.

Available On-line Help
Emacs offers extensive on-line help, all available by pressing

the C-h key. This displays the following prompt in the
minibuffer:

C-h (Type ? for further
options)-

Emacs offers so many categories of help that you need to tell
it which category you're interested in seeing. If you don't know
the categories, enter a question mark and Emacs splits the
screen, if necessary, to show you descriptions of the various
kinds of available help (see Fig. 2.9).

EDITING SGML DOCUMENTS WITH THE EMACS TEXT EDITOR

35

Figure 2.9. Emacs’s description of various help categories

There are so many help categories that they won’t fit on the
screen. Instead of trying to memorize them all, start with the
most important ones, and remember that you can always press
C-h ? to learn more.

a (command-apropos)

List all the commands with a given string of char-
acters in them. For example, enter C-h a and
then the word “macro” in response to the Com-
mand apropos (regexp): prompt in the
minibuffer. Fig. 2.10 shows how the help facility
lists all the commands that involve creating and
using macros (with their keystrokes if any have
been assigned).

SGML CD

36

Figure 2.10. command-apropos entries for “macro”

Selecting Command Apropos... from the Help
menu also invokes this command.

C-h k (describe-key)

After you press C-h k, press any Emacs key-
stroke to display on-line help about that key-
stroke. This is useful for deciding which
keystroke is free to have a macro assigned to it.
For example, pressing C-h k C-a displays the
screen shown in Fig. 2.11.

Selecting Describe Key... from the Help menu
does the same thing.

EDITING SGML DOCUMENTS WITH THE EMACS TEXT EDITOR

37

Figure 2.11. describe-key information on C-a

C-h t (help-with-tutorial)

Start the interactive Emacs tutorial. This reviews
the Emacs features that you read about here and
teaches you some new ones.

C-h v (describe-variable)

Enter the name of an Emacs variable and the
help system displays the variable’s current value
and any available documentation. This is useful
to check on the necessity of resetting a variable’s
value.

SGML CD

38

C-h i (info)

Start the info program, a menu-driven browser
for Emacs documentation, as shown in Fig. 2.12.

Figure 2.12. Emacs info opening screen

The lines with asterisks are menu choices. Move
your cursor to one and press Enter to select that
choice. The “Info” choice is a good place to start
in order to learn more about navigating the Info
browser. The handiest Info command is ?, which
displays the important single-letter Info naviga-
tion commands. The most important of these is
the letter l for “last node,” which lets you retrace
your path after selecting a series of Info nodes
(information topics).

EDITING SGML DOCUMENTS WITH THE EMACS TEXT EDITOR

39

If your copy of Emacs has trouble finding the Info files, add
the following line to your .emacs file to tell Emacs where to
look, substituting the appropriate pathname for /path-
name/emacs/:

(setq
Info-directory-list (cons
"/pathname/emacs/info" Info-default-directory-list))

Entering a question mark after you’ve entered C-h is like ask-
ing for help about the help facility. After you’ve looked it over,
you’re still in the on-line help, and Emacs is still waiting for you
to enter one of the other possible keystrokes (besides ?) that
can come after C-h— such as a for command-apropos or i for
info.

Editing SGML Documents with Emacs and PSGML
Emacs actually has a built-in mode for editing SGML docu-

ments, but it merely automates the insertion of tag delimiters
(“<“ and “>”) and the calling of the external program that can
validate the file you're working on, such as nsgmls or sgmls.

PSGML is an add-on SGML mode for Emacs which does
much more. While not a complete SGML validator, it adds
many features to Emacs that let you edit a document instance
without worrying about its structure because it automates most
of the tasks necessary to maintain that structure. In addition to
letting you select and add the appropriate tags with a minimum
of keystrokes, it can insert required tags automatically, help
you find structural mistakes, indent tags to show nesting struc-
ture, and let you set tags, comments, and entity references in
different fonts or colors to make it easier to see the structure.

SGML CD

40

Installing PSGML
A user usually receives PSGML as a collection of files com-

bined into one compressed file such as a DOS/Windows ZIP
file or a UNIX GNU zip file. Files extracted from this distribu-
tion file fall into three main categories:

• Those that end with an extension of .el, which are collec-
tions of LISP functions similar to your .emacs file.

• Those with an extension of .elc, which are compiled ver-
sions of the .el file that run faster.

• All the other files, which contain information about install-
ing and using PSGML.

UNIX users will find installation instructions and scripts
included with PSGML. DOS/Windows users need to execute
the important steps by hand.

The .elc files created with one version of Emacs on a partic-
ular operating system may not work with another version of the
program or on another operating system, but you can create
new ones yourself from the .el files. You can actually run
PSGML using only the .el files, but it's so much faster with
.elc files that you may as well create them before trying to use
it.

First, put all the PSGML files into their own subdirectory and
make sure that Emacs knows where to find them by adding the
following LISP code to your .emacs startup file:

(setq load-path
 (append
 (list nil

 "/app/emacs/psgml") ; substitute your PSGML directory name
 load-path))

EDITING SGML DOCUMENTS WITH THE EMACS TEXT EDITOR

41

<TIP> Even when using Emacs and PSGML under DOS/Windows,
PSGML expects the directory name to be entered with for-
ward slashes (“/”) and not the backslashes (“\”) used in PC
pathnames.

This adds the directory name to the Emacs load-path vari-
able, a list of directories where Emacs looks when you tell it to
load a particular program. Substitute the name of the directory
where you stored the PSGML files for /app/emacs/psgml
above.

Next, enter M-x to display the Emacs command line and
enter byte-compile-file. Press Enter, and at the Byte
compile file: prompt, enter the name of an .el file to com-
pile and press Enter. If the prompt is Byte compile file:
~/, you can treat that ~/ as the name of the current directory
and then type psgml/psgml.el after it if you want to compile
the psgml.el file in the psgml subdirectory of your current
directory.

Do this for all the .el files in your PSGML directory. If you
see any error messages during the compilation of a file, com-
pile the others and go back and try that one again. It may have
relied on something from another .elc file that you hadn’t yet
created.

A shortcut to repeatedly entering the byte-compile-file
command is the byte-force-recompile command, which
prompts you for the name of a directory and then compiles all
the .el files in that directory.

I mentioned that Emacs has a built-in SGML mode that
doesn’t do much, so the next step is to tell Emacs to use
PSGML for its SGML mode instead of the built-in one. Do this
by adding the line

(autoload ’sgml-mode "psgml" "Major mode to edit SGML files." t)

to your .emacs file.

SGML CD

42

In addition to the program files, PSGML includes documen-
tation that you can view with the Emacs Info browser. Put the
psgml.info file into the directory (probably a subdirectory of
the main Emacs directory called info) with the other Info files.
Then edit the dir file in that same directory to include the fol-
lowing line:

* PSGML: (psgml). SGML editing.

If it’s a multi-user system and you’re not the system adminis-
trator, you probably won’t be allowed to add or edit files in a
subdirectory of the Emacs directory. You can still view the
psgml.info file from within Emacs by putting it in any direc-
tory you wish and entering the command

 C-h i g (/pathname/psgml.info)

to display that file with the Info program. (Include the full path-
name of its location where you see /pathname/.)

<TIP> Remember to leave off the “o” in the file extension if you're
using Emacs and PSGML under DOS, where file extensions
can only be up to three letters long.

When specifying the info file's location, DOS/Windows Emacs
accepts pathnames with forward slashes (“/”) or backslashes
(“\”) separating its components.

Starting Up PSGML
How does Emacs know to load PSGML mode? There are

three ways:

• It knows to automatically load it if you edit a file with an
extension of “.sgml” or “.sgm.”

EDITING SGML DOCUMENTS WITH THE EMACS TEXT EDITOR

43

• You can load a mode in Emacs by entering M-x and enter-
ing the mode's name (in this case, sgml-mode) at the
minibuffer command line. This is valuable when editing
SGML files that don't have “.sgml” or “.sgm” as an exten-
sion.

• The following line at the top of your file tells Emacs to
automatically load PSGML:

<!-- -*- sgml -*- -->

Once you start up Emacs with PSGML and load a document,
PSGML doesn't actually parse the document (unless the
sgml-auto-activate-dtd and sgml-set-face variables are
both set to t) until you execute one of a certain category of
commands. Because of this, it can't do any of the automatic
visual formatting that makes editing your document easier—for
example, indenting of the element nesting levels or displaying
markup in different fonts or colors. One of the commands that
causes it to parse, and a good one to start with, is the sgml-
next-trouble-spot command, which you invoke by press-
ing C-c C-o or by selecting Next Trouble Spot from the Move
menu. While PSGML is not a full validating parser (and it can
call one easily enough, as we'll see in “Finding Tagging Mis-
takes”) it can locate many potential problems, and the parsing
that it performs while looking lets it do this visual formatting.

The most common problem that sgml-next-trouble-
spot finds is a tag that doesn't belong somewhere, either
because it's in the wrong place or because it's not even a valid
tag for that document (for example, if the generic identifier has
a typo). If it finds no problems, the cursor jumps to the end of
the document, finishes up any visual formatting, and displays
the message Ok in the minibuffer.

With a large DTD, this parsing can take a while. You'll see
messages like “Parsing doctype” and “Garbage collecting“ (a
colorful term for ”RAM reorganization“) flash by for a while in
the minibuffer. To speed this process, you can save the DTD in

SGML CD

44

a special compiled version that PSGML loads more quickly by
entering the command sgml-save-dtd at the M-x minibuffer
prompt. PSGML offers to save the compiled version in the same
directory with the same filename as the document you are edit-
ing but with an extension of .ced. If you do change the default
directory or filename at all, you’ll have to specify the full path-
name of the saved one when you want to use it with the com-
mand sgml-load-dtd. If you let PSGML save the compiled
one with the default name and directory it can find this com-
piled version by itself the next time you edit that document.

SGML Declarations and DTDs

PSGML doesn’t require you to include an SGML declaration
with your document. In fact, if you do include it, PSGML
ignores it. It uses the Reference Concrete Syntax but ignores the
Reference Concrete Syntax’s limitation on element type name
length.

PSGML must know how to find your document’s DTD so
that it can enforce your document instance’s structure. There
are three ways to tell PSGML how to locate the DTD to use
with your document:

• A SYSTEM identifier in the DOCTYPE declaration.
• A PUBLIC identifier in the DOCTYPE declaration.
• One of several Emacs variables set by PSGML.

The first two methods are standardized and are therefore
used by other SGML applications. For this reason, the beginner
is best off ignoring the third method.

The SYSTEM identifier is the simplest method. Within a
DOCTYPE definition, such as the following,

<!DOCTYPE chapter SYSTEM "mybook.dtd">

EDITING SGML DOCUMENTS WITH THE EMACS TEXT EDITOR

45

the keyword SYSTEM tells the software “the DTD is in the fol-
lowing file on this system.” Using the above declaration, on
most systems the software looks in the document file's direc-
tory. With some systems you can also specify a relative or abso-
lute pathname with the file; the following shows a DTD
filename with an absolute filename:

<!DOCTYPE chapter system "\dev\sgml\dtds\mybook.dtd">

Some SGML software is pickier about the pathname, expect-
ing UNIX-style forward slashes (“/”) instead of backslashes
(“\”), even if running a DOS or Windows system that uses
backslashes to identify pathname components. PSGML has no
problem with the DOS style.

The PUBLIC identifier is popular when using well-known
DTDs. The DOCTYPE declaration includes a string after the
word PUBLIC, such as this one for the DocBook DTD:

<!DOCTYPE chapter PUBLIC "-//Davenport//DTD DocBook V3.0//EN">

The SGML application software (in this case, PSGML) still
needs to know where a copy of this public DTD is, so the most
common way to tell it is with a catalog file following the format
defined by SGML Open Technical Resolution 9401:1995. Each
entry of this file (commonly called catalog) has the keyword
PUBLIC followed by the string that identifies the DTD and the
actual filename (and, if necessary, the location) of the system's
copy of the DTD. The following shows typical catalog entries
for the DocBook and HTML DTDs:

PUBLIC "-//Davenport//DTD DocBook V3.0//EN"
 "DOCBOOK.DTD"
PUBLIC "-//IETF//DTD HTML//EN"
 "\WEBSTUFF\HTML.DTD"

SGML CD

46

Note that the DocBook entry has no pathname, indicating
that the docbook.dtd file is in the same directory as the cata-
log file, while the HTML entry includes an absolute pathname.

Once the SGML application software knows where the cat-
alog file is, it can look there to see which DTD file to use with
the DOCTYPE’s public declaration. To tell PSGML where to
find the catalog file, set the environment variable
SGML_CATALOG_FILES to the file’s fully qualified name (that is,
the name with its pathname included). If the file is called cat-
alog and stored in a directory named \dev\sgml\dtds\ on a
DOS/Windows system, the following line tells PSGML where
to find the catalog:

set SGML_CATALOG_FILES=\dev\sgml\dtds\catalog

<TIP> The UNIX syntax for setting the environment variable
depends on the shell you’re using.

Keep in mind that a DTD itself may contain declarations for
public entity sets that it uses, and that you may need to tell the
application software where to find those entity sets. For exam-
ple, if your DTD includes the following entity declaration to let
documents use the public ISO character entity set,

<!ENTITY % ISOchars PUBLIC
"-//ENTITIES Public ISO Character Entity Declarations//EN"

 "iso-public">

then your catalog file needs an entry to indicate that character
entity set’s location. This means adding an entry like this to
your catalog file:

PUBLIC "-//ENTITIES Public ISO Character Entity Declarations//EN" "ISOPUB.ENT"

EDITING SGML DOCUMENTS WITH THE EMACS TEXT EDITOR

47

Using PSGML
PSGML makes it easier to edit SGML files by adding com-

mands to manipulate SGML document instances and by add-
ing keystrokes and menu choices that invoke most of these
commands. Even if the version of Emacs and the operating sys-
tem that you use cannot display fonts, colored text, or menus,
PSGML’s built-in intelligence still offers help to the writer cre-
ating a document. It reads and understands your DTD and
automates the chores of ensuring that your document conforms
to it, letting you concentrate on the content you’re creating and
not on the correctness of the tags that describe your docu-
ment’s structure.

PSGML Startup Variables

In the section “Setting Emacs Variables to Control Its Behav-
ior,” we saw that Emacs has variables that you can set in the
.emacs file to customize its behavior. PSGML adds several
new ones, and I've found the following Boolean ones most
valuable when I use PSGML. I set all of them to t in my
.emacs file with a line like this:

(setq sgml-omittag-transparent t)

sgml-omittag-transparent

When you tell PSGML that you want to insert a
new element, you can have it list all the allow-
able element types that you may insert at the cur-
sor's current position. If sgml-omittag-
transparent is set to a nil value, PSGML only
lists element types that can occur inside the ele-
ment where the cursor is located. If set to a non-
nil value, PSGML also lists element types that
can begin after what PSGML calls the “live” ele-
ment (that is, the element where the cursor is

SGML CD

48

currently located) if the live element doesn’t
need an end-tag.

For example, if the live element is a para ele-
ment and the DTD doesn’t require para ele-
ments to have an end-tag, any commands that
list valid element types to insert at the cursor
position will list those that may come after a
para element as well as those that may appear
within one.

sgml-balanced-tag-edit

If this is set to a non-nil value, each time you tell
PSGML to insert a certain element, it inserts the
beginning and end-tag for you, putting your cur-
sor between them.

sgml-auto-insert-required-elements

If this is set to a non-nil value, then each time
you tell PSGML to insert a particular element, it
also inserts the tags for any required elements
within that element. For example, when using
the DocBook DTD, telling PSGML to insert the
chapter element also inserts the tags for the
title element at the beginning of the chapter
and follows it with a comment telling you to
insert “one of (list of valid element types)” to tell
you that the title must be followed by at least one
of the listed element types.

sgml-set-face

If set to a non-nil value, this variable tells PSGML
to display (if possible on your monitor) tags, con-
tent, entity references, and comments in different
fonts or colors. For more on this, see the section
“Displaying Markup in Different Fonts and Col-
ors.”

EDITING SGML DOCUMENTS WITH THE EMACS TEXT EDITOR

49

sgml-live-element-indicator

Setting this to a non-nil value tells PSGML to dis-
play the document type and the live element
type on the mode line. For example, if your cur-
sor is on a title element while editing a Doc-
Book chapter, the mode line might have the
following message:

(SGML [chapter/title]))

This may slow down Emacs a bit, but the sacri-
fice is often worth it if your document isn’t too
large.

sgml-indent-step
This sets PSGML to automatically indent tags as
you type to give visual clues about element
structure. With the sgml-indent-step variable
set to its default value of two, the tags of an ele-
ment inside another are indented two more
spaces from the left than the tags of its container
element. In the following, we see that the title,
para, and figure elements’ tags are all
indented two more characters than the sect2
start- and end-tags, and that the figure ele-
ment’s title and graphic subelements are
indented two more characters than the figure
start- and end-tags:

<sect2>
 <title>A Bosom Friend</title>
 <para>We then turned over the book together, and I endeavored to
explain to him the purpose of the printing, and the meaning of the few
pictures that were in it.</para>
 <figure>
 <title>A Sample Figure</title>
 <graphic fileref="giftest.gif" format="gif"></graphic>
 </figure>
 <para>Thus I soon engaged his interest; and from that we went to

SGML CD

50

jabbering the best we could about the various outer sights to be seen
in this famous town.</para>
<sect2>

Too much indenting can push text too far to the
right side of your screen, so you can turn indent-
ing off by setting sgml-indent-step to a value
of zero in your .emacs file with the following
line:

(setq sgml-indent-step 0) ; default value is 2

Entering PSGML Commands

As with other Emacs commands, all PSGML commands can
be entered at the M-x command prompt, most can be entered
with keystrokes, and many can be entered through menus if
your version of Emacs supports menus.

Keystrokes are usually the fastest. Most PSGML keystrokes
consist of C-c followed by another Control key combination;
many are the SGML equivalents of regular Emacs commands.
For example, in regular Emacs, M-f moves the cursor one word
forward and M-b moves the cursor one word backward. In
“Moving Your Cursor Around an SGML Instance,” we'll see
that C-M-f and C-M-b move the cursor forward and backward
one element. (The C-M-f notation can be a bit confusing; think
of it as Escape followed by Ctrl+f, not Escape between the
Ctrl and f, as it's written. Some versions of Emacs let you
press Alt instead of Escape for metakeys, so that C-M-f could
be Ctrl+Alt+f.)

PSGML adds six new menus to the regular Emacs selection:
SGML, Modify, Move, Markup, View, and DTD. As this section
covers each PSGML feature, it mentions any menu alternatives
to commands and keystrokes.

EDITING SGML DOCUMENTS WITH THE EMACS TEXT EDITOR

51

Entering Text
The sgml-insert-element command could be the one

you use the most when writing with PSGML. When you enter it
at the command line (or when you select Insert Element from
the Markup menu, or more likely, when you enter the C-c C-e
keystroke that invokes it), PSGML prompts you for the name of
the element type in the minibuffer:

 Element:

As with other minibuffer prompts, you can use Emacs’s com-
pletion feature, so you only need to type the first few characters
at this prompt and then press Tab or the space bar to have
Emacs fill out as much as it can. If more than one valid element
type name begins with the letters you typed (and note that
“valid” part—the fact that this command only offers you valid
element type names to insert makes it very useful), Emacs lists
them in a new window so that you can choose one.

After you tell PSGML the element type to insert, if sgml-
balanced-tag-edit and sgml-auto-insert-required-
elements are set to non-nil values (see “PSGML Startup Vari-
ables” for more on these) then PSGML inserts the element's
start-tag, end-tag, and any required subelements. If a certain
point in the document needs an element from a choice of sev-
eral types, PSGML inserts an SGML comment that lists your
choices. Finally, it puts your cursor right after your new ele-
ment's start-tag (or the first subelement in it that requires text,
as we'll see in the figure example below) so that you can start
typing.

For example, let's say you want to insert a figure into a Doc-
Book document. First press C-c C-e, which displays the
prompt Element: in the minibuffer to ask what element type
to insert. Enter the letters fi and press Tab to see if Emacs
enters the remaining letters of the word “figure” for you. No
other DocBook element types begin with the letters “fi,” so

SGML CD

52

Emacs doesn't need to open a separate window to ask “which
element type begins with 'fi'?” and it adds the “gure” for you in
the minibuffer.

When you press Enter, PSGML inserts the following text
and positions your cursor between the title element's start-
and end-tags:

 <figure>
 <title></title>
 <!-- one of (blockquote informalequation informaltable literallayout pr\
ogramlisting screen screenshot graphic synopsis cmdsynopsis funcsynopsis link o\
link ulink) -->
 </figure>

Note how the line after the title tags is a comment telling
you that you must include one of the listed element types there.
The comment is too long to fit on a single line, so it wraps onto
a second and third line on your screen and puts a backslash (\)
at each wrapping point to show you that the text after each
slash is a continuation of the current line. Although the line is
visually wrapped so that you can see the whole thing, the
backslashes show that it's still technically one line, which
makes it easier to delete it once you've heeded the comment's
advice: simply put your cursor at the beginning of the com-
ment and press C-k to invoke the kill-line command.

This description might make the process of inserting a fig-
ure element appear complicated, but let's review it without
the background information to see how little work there really
is:

1. Press C-c C-e.
2. Enter fi at the Element: prompt and press Tab.
3. Press Enter and start typing the text of the figure's title.

Sometimes you can't start typing right away because the con-
tent model of your new element offers a choice of subelements
at the point where you start entering text. For example, you can
start a DocBook ItemizedList (such as a bulleted list) by

EDITING SGML DOCUMENTS WITH THE EMACS TEXT EDITOR

53

entering C-c C-e, the letters “it,” and pressing Tab and Enter
to let Emacs enter the rest of the element type name. PSGML
enters the tags to start the list and a ListItem start-tag for the
list's first item, but the ListItem can begin with so many differ-
ent element types that PSGML inserts a 400-character comment
to tell you about your choices:

 <ItemizedList>
 <ListItem>
 <!-- one of (sidebar procedure msgset simpara para formalpara funcsynop\
sis cmdsynopsis synopsis graphic screenshot screen programlisting literallayout\
 informaltable informalequation blockquote variablelist simplelist segmentedlis\
t orderedlist ItemizedList indexterm highlights table figure example equation e\
pigraph comment bridgehead warning tip note important caution authorblurb ancho\
r abstract) -->
 </ListItem>
 </ItemizedList>

If you're entering simple text, you'll probably want to enter a
para (“paragraph”) element.

If para isn't the only valid element type beginning with the
letter “p,” you'll probably have to enter at least “pa” at the
Element: minibuffer prompt before you press Tab to tell
Emacs to fill out the rest of the element type name for you.
Since the element type representing a simple paragraph of text
is the one you'll probably enter most often into any document,
it's good to know that the PSGML sgml-split-element key-
stroke lets you do this with even fewer keystrokes than the
C-c C-e method.

Splitting the Live Element

The sgml-split-element command, invoked with
C-c Enter, tells PSGML to split the live element into two at
the cursor position. If you decide that an existing paragraph
should actually be two paragraphs, pressing this keystroke with
your cursor in that paragraph puts an end-tag and start-tag at
the cursor location and positions your cursor right after the

SGML CD

54

new start-tag. For example, if you want the sentence beginning
“Go from Corlears Hook” to begin a new para element in
Fig. 2.13,

Figure 2.13. Using sgml-split-element to split an existing element

pressing C-c Enter with your cursor on the “G” in “Go” has
the result shown in Fig. 2.14.

Figure 2.14. Result of splitting an element with sgml-split-element

You might use the Emacs M-q fill-paragraph keystroke to
adjust those line breaks, but we'll see a better way that takes
element structure into account in the “Justifying Element Text”
section.

With your cursor just before a paragraph end-tag,
C-c Enter essentially ends the current paragraph and starts a
new empty one. This is great when entering new text (as
opposed to editing existing text) because it enters a large
majority of your first draft tags for you. For example, let's say
your cursor is right after the question mark in Fig. 2.15.

Figure 2.15. Creating a new element with sgml-split-element

EDITING SGML DOCUMENTS WITH THE EMACS TEXT EDITOR

55

Press C-c Enter, and PSGML starts a new paragraph after
that one and puts your cursor between the new paragraph’s
start- and end-tags, so that you can type away without having
entered any tags, element type names, or other structural infor-
mation (see Fig. 2.16).

Figure 2.16. Result of creating a new element with sgml-split-
element

So, unless you’re writing highly specialized text, over three-
quarters of the process of writing with Emacs and PSGML con-
sists of entering your text and pressing C-c Enter every few
sentences. The keystroke is easy to remember because we
already saw that most PSGML keystrokes consist of C-c fol-
lowed by other characters, and this particular key is the sim-
plest to follow it—in fact, the Enter key is what you'd press at
the end of a paragraph with nearly any word processor.

Keep in mind that the sgml-split-element keystroke does
more than just create new paragraphs. One nice trick is press-
ing C-c Enter a second time to split the live element's parent,
or pressing it a third time to split the parent's parent. For exam-
ple, let's say you just finished typing “may be.” in Fig. 2.17.

Figure 2.17. Before splitting any elements

SGML CD

56

Pressing C-c Enter, as we already saw in this situation,
starts a new paragraph under the current one, as shown in
Fig. 2.18.

Figure 2.18. Splitting the para element

Note that after doing this, a minibuffer message tells you
Repeat the command to split the containing sect2
element. In other words, because that para element is inside
a sect2 element, immediately pressing C-c Enter again ends
the current sect2 element and starts a new one, putting your
cursor between the para start- and end-tags that begin our new
sect2 element (see Fig. 2.19).

EDITING SGML DOCUMENTS WITH THE EMACS TEXT EDITOR

57

Figure 2.19. Splitting the sect2 element by repeating the C-c Enter
keystroke

Remember that this doesn’t automatically insert other ele-
ments that may be necessary—in this case, the new sect2 ele-
ment lacks its required title element—so you'll have to
remember the occasional sgml-next-trouble-spot key-
stroke (C-c C-o) to check for such oversights.

Now the minibuffer message tells you Repeat the com-
mand to split the containing sect1 element. So,
pressing C-c Enter one more time ends the sect1 element
titled “Gone Whalin'” and starts a new sect1, putting a new
sect2 element inside of the new sect1 and a new para inside
of the new sect2 (see Fig. 2.20).

SGML CD

58

Figure 2.20. Splitting the sect2 element’s enclosing sect1

Because the new sect1 needs a title, sgml-next-trouble-
spot will give you similar error messages about starting a new
paragraph without including the sect1 element’s necessary
title element.

For a simpler, more typical example, let’s say you’re finishing
a paragraph within a list’s first item and you want to begin a
new list item (see Fig. 2.21).

Figure 2.21. Ready to add a new list item

After typing the question mark following the word “lights,”
press C-c Enter and PSGML puts a new paragraph in that list
item, as shown in Fig. 2.22.

EDITING SGML DOCUMENTS WITH THE EMACS TEXT EDITOR

59

Figure 2.22. Splitting the para element with C-c Enter

What you really wanted, however, was to start a new list
item, not a new paragraph within the current list item. Pressing
C-c Enter another time creates this new list item because
listitem is the parent of the para element that you just split.
It even puts the start- and end-tags for a new para element in
that list item, with your cursor between these two tags so that
you can start typing right away (see Fig. 2.23).

Figure 2.23. Splitting the listitem element by pressing C-c Enter a
second time

To review these steps without all the commentary (and to
show how few steps it really was): you finished a list item,
pressed C-c Enter twice, and were ready to start typing the
text of the new list item.

Inserting Tags Around Existing Text

So far, inserting elements has meant telling PSGML to insert
a start- and end-tag pair and to position the cursor between
them. This is convenient when entering new text into a docu-
ment, but what about adding tags to existing text? For example,
when putting a pair of emphasis tags around a word in the

SGML CD

60

middle of a sentence? Using the sgml-tag-region, sgml-
insert-tag and sgml-insert-end-tag commands and key-
strokes (along with the convenience of Emacs’s completion
feature) makes this simple.

The sgml-tag-region keystroke (C-c C-r) and the Tag
Region choice of the Markup menu tell PSGML to put a start-
tag at the beginning of the region and the corresponding end-
tag at the end. (Remember, the “region” is like a marked block
in other word processors and text editors, delimited by your
last marked point and the cursor's current location.) For exam-
ple, let's say you put your cursor on the “R” in “Right” in Fig.
2.24, pressed C-space to set the mark there, and moved your
cursor to the comma after “Whalemen.”

Figure 2.24. Just before adding emphasis tags

Pressing C-c C-r displays the prompt Tag region with
element: in the minibuffer, waiting for you to enter an ele-
ment type name. You can use completion, so to put emphasis
tags around the phrase (when using the DocBook DTD) you
only need to type “em” followed by a Tab to have PSGML fill
in the “phasis” and then Enter to complete the command, as
shown in Fig. 2.25.

Figure 2.25. emphasis tags added with C-c C-r

(The paragraph may look like it needs the fill-paragraph
keystroke (M-q), but we'll see an even better PSGML version of
this command in the “Justifying Element Text” section.) Some
versions of Emacs don't highlight the marked region, so it's

EDITING SGML DOCUMENTS WITH THE EMACS TEXT EDITOR

61

easy to forget where you set the last mark, and sometimes the
sgml-tag-region command puts the start- or end-tag where
you didn’t expect it to. To make sure of the mark’s location, the
exchange-point-and-mark keystroke (C-x C-x) mentioned
earlier is a great way to quickly check. Press it twice (in other
words, press C-x four times) to check the mark’s location and
then return the cursor to its original position.

The sgml-insert-tag and sgml-insert-end-tag com-
mands let you insert start and end-tags individually. C-c < (and
Insert Start-Tag from the SGML menu) invoke the sgml-
insert-tag command, and C-c / (and Insert End-Tag from
the same menu) invoke the sgml-insert-end-tag com-
mand. To put emphasis tags around the word “No” in
Fig. 2.26, first put your cursor at the “N.”

Figure 2.26. Before inserting emphasis start-tag

Press C-<. At the Tag: < prompt, you only need to enter
“em” when using the DocBook DTD and then Tab to complete
the element name. Press Enter to insert the start-tag as shown
in Fig. 2.27.

Figure 2.27. emphasis start-tag inserted with C-<

Entering the emphasis end-tag requires even less typing
because it's the only end-tag that can appear right after an
emphasis start-tag. With your cursor on the exclamation point,
press C-c /, and that's it—you don't even have to press Enter.
PSGML enters the emphasis end-tag for you.

SGML CD

62

Inserting Elements with the Menu

If your copy of Emacs has a menu, selecting Insert Element
from the Markup menu displays a new menu under the menu
bar’s Markup choice with a list of element types that are valid
at the cursor’s current position. If only one element type is
valid, only one shows up there; if there are too many valid
choices to vertically fit on the screen, PSGML replaces the
Markup menu with a menu offering multiple submenus of the
valid element types. For example, with your cursor right after a
DocBook para element, selecting Insert Element from the
Markup menu displays the element type menus shown in
Fig. 2.28.

Figure 2.28. First of four menus of DocBook elements that can follow a
para element

To insert individual start- or end-tags, select Insert Start-Tag
or Insert End-Tag from the same menu.

Justifying Element Text

We saw that M-q (fill-paragraph) justifies a paragraph in
Emacs, redistributing words in the paragraph to adjust the line
lengths to just under the right margin setting. An SGML docu-

EDITING SGML DOCUMENTS WITH THE EMACS TEXT EDITOR

63

ment instance may have text—whether data, tags, or some
combination—on every line, so pressing M-q would combine a
lot of text into a huge paragraph.

Instead, use the sgml-fill-element command, available
by pressing C-c C-q or by selecting Fill Element from the Mod-
ify menu. In technical terms, it fills the biggest enclosing
mixed-content element or fills the subelements if the enclosing
element only has element content. In layman's terms, the first
part of this tells us that PSGML doesn't justify the text of an ele-
ment that only has data (such as emphasis in the example
below). Instead, it justifies the container element in which
those elements occur alongside other data.

<sect1>
 <title>The Chase--Third Day</title>
 <para>But aye, old mast, we both grow old together; sound in our
hulls, though, are we not, my ship? Aye, minus a leg, that’s all. By
heaven this dead wood has the better of my live flesh every
way.</para>
 <para>I can’t compare with it; and I’ve known some ships made of
dead trees outlast the lives of men made of the most vital stuff of
vital fathers. <emphasis>What’s that he said?</emphasis> he should still go bef\
ore me, my pilot; and yet to be
seen again? But where? Will I have eyes at the bottom of the sea,
supposing I descend those endless stairs and all night I’ve been
sailing from him, wherever he did sink to.</para>
</sect1>

In the above example, I just added the emphasized phrase
“What's that he said?,” which obviously threw off the para-
graph's line breaks. Whether my cursor is on the word “said”
between the emphasis tag pair or on the word “fathers” to the
left of the emphasis start-tag, pressing C-c C-q justifies the
paragraph to look like this:

<sect1>
 <title>The Chase--Third Day</title>
 <para>But aye, old mast, we both grow old together; sound in our
hulls, though, are we not, my ship? Aye, minus a leg, that’s all. By
heaven this dead wood has the better of my live flesh every
way.</para>

SGML CD

64

 <para>I can’t compare with it; and I’ve known some ships made of
dead trees outlast the lives of men made of the most vital stuff of
vital fathers. <emphasis>What’s that he said?</emphasis> he should
still go before me, my pilot; and yet to be seen again? But where?
Will I have eyes at the bottom of the sea, supposing I descend those
endless stairs and all night I’ve been sailing from him, wherever he
did sink to.</para>
</sect1>

If I had pressed the regular Emacs fill-paragraph key-
stroke (M-q), it would have combined that paragraph with the
paragraph before it and any other text after the most recently
skipped line and before the next one.

According to the second part of the sgml-fill-element
command’s technical description in the PSGML Info file, if the
cursor is in an element that only has element content, with no
data other than those in its subelements, then PSGML rejusti-
fies all of that element’s subelements. In the last example, if the
cursor had been right after the sect1 start-tag, pressing
C-c C-q would have also justified the paragraph with the
emphasis element, along with the other sect1 subelements.

With your cursor at the beginning of a document, this tech-
nique is a handy way to clean up an entire document before
saving it.

Indenting Text

We saw in the “PSGML Startup Variables” section that the
.emacs file's sgml-indent-step variable makes it possible to
have PSGML automatically indent document tags as you type
in order to give visual clues about the structure of the docu-
ment instance. Just as edits to existing text can throw off the
justification so that you need sgml-fill-element to line it up
again, the indenting can get mangled by edits as well, and
there's a command to fix it: indent-region. Being a regular
Emacs command (as opposed to a special PSGML command)
the M-C-\ keystroke that invokes this doesn't begin with a C-c.

EDITING SGML DOCUMENTS WITH THE EMACS TEXT EDITOR

65

It indents according to SGML element structure because it fol-
lows the rules set by the current mode, which in this case is
PSGML.

For example, the following text, after some edits, has hap-
hazard indentation:

 <sect2>
 <title>A Bosom Friend</title>
 <para>We then turned over the book together, and I endeavored to
 explain to him the purpose of the printing, and the meaning of the few
 pictures that were in it.</para>
 <figure>
<title>A Sample Figure</title>
<graphic fileref="giftest.gif" format="gif"></graphic>
 </figure>
 <para>Thus I soon engaged his interest; and from that we went to
jabbering the best we could about the various outer sights to be seen
in this famous town.</para>

After we mark it as a region and press M-C-\, PSGML re-
indents it to make the element structure much clearer:

 <sect2>
 <title>A Bosom Friend</title>
 <para>We then turned over the book together, and I endeavored to
explain to him the purpose of the printing, and the meaning of the few
pictures that were in it.</para>
 <figure>
 <title>A Sample Figure</title>
 <graphic fileref="giftest.gif" format="gif"></graphic>
 </figure>
 <para>Thus I soon engaged his interest; and from that we went to
jabbering the best we could about the various outer sights to be seen
in this famous town.</para>

Moving Your Cursor Around an SGML Instance
In the section “Moving Your Cursor Around,” we saw how to

move your cursor one character or word to the left or right, one
line up or down, and to the beginning or end of a line or docu-
ment. PSGML takes advantage of an SGML document's struc-

SGML CD

66

ture to provide several handy new cursor movement
commands. Essentially, these keystrokes let you quickly put
your cursor where you want without the tags getting in your
way.

To more easily remember PSGML cursor movement key-
strokes, keep in mind that many are the SGML equivalents of
similar Emacs commands, entered by preceding the same key-
stroke with the Escape key. (Remember that the Emacs docu-
mentation convention represents a combination like Escape
followed by Ctrl+A as C-M-a, with the “M” indicating the
Escape key.)

The Emacs keystrokes that move the cursor to the beginning
and end of the current line are C-a and C-e, respectively. The
PSGML keystroke to move the cursor to the beginning of the
live element is C-M-a, (sgml-beginning-of-element) which
moves it to the first data character of the current element.
C-M-e (sgml-end-of-element) moves to the end of the live
element, putting the cursor at the “<” that begins the element's
end-tag so that you can add new text to the end of that ele-
ment. (Selecting Beginning of element or End of element from
the Move menu also executes these commands.)

For example, with your cursor on the “i” in “shirt” in Fig.
2.29, pressing C-M-a moves it to the “s” in the same word.
C-M-e moves it right after the “t” that ends the word, because
the entire emphasis element consists of the word “shirt.” With
your cursor on the word “two” following “shirt,” C-M-a moves
it to the “I” that starts the first sentence, and C-M-e moves it
right after the period following the word “Pacific” because that
para element is the new live element once your cursor is out-
side of that emphasis element.

Pressing either of these keystrokes a second time won't have
any effect, just as pressing C-a when your cursor is already at
the beginning of a line won't move your cursor anywhere.

EDITING SGML DOCUMENTS WITH THE EMACS TEXT EDITOR

67

Figure 2.29. Moving your cursor around

To jump forward or backward an element, use the C-M-f
(sgml-forward-element) and C-M-b (sgml-backward-ele-
ment) keystrokes, or select Forward element or Backward ele-
ment from the Move menu. sgml-forward-element moves
to the point right after the live element’s next subelement; for
example, with your cursor on the word “stuffed” in Fig. 2.29,
C-M-f jumps it to the space just before the word “or.” Pressing
it a second and third time moves your cursor to the space
before the words “it” and “for” respectively, but pressing it a
fourth time displays the message “No more elements in para
element” in the minibuffer. Your cursor is still in the para ele-
ment, but there are no more elements within it after the word
“for.”

For the same reason, putting your cursor on the word “shirt”
and pressing C-M-f displays the message “No more elements
in emphasis element” because there are no elements within
that emphasis element to jump past.

sgml-backward-element behaves similarly in the opposite
direction. With your cursor on the word “it” in Fig. 2.29’s first
para element, pressing C-M-b jumps it to the < of the empha-
sis start-tag following “carpet-bag, ” and repeating the key-
stroke moves the cursor to the emphasis start-tag after the
phrase “stuffed a ” near the beginning of the paragraph. Press-
ing it a third time displays an error message similar to the one
we saw when we tried to jump the cursor forward in an ele-
ment with no more contained elements, but this time no con-
tained elements precede the cursor: “No previous element in
para element.”

SGML CD

68

sgml-forward-element and sgml-backward-element
demonstrate PSGML’s intelligence because they show that
PSGML knows your document is not just a bunch of text with
tags mixed in but rather an organized document with elements
inside of other elements in a specific structure. Three other
commands that take advantage of your document’s structure to
help you navigate it are sgml-down-element, sgml-up-ele-
ment, and sgml-up-backward-element. (In addition to the
keystrokes described below, these are available as Up element,
Down element, and Backward up element on the Move
menu.)

It's easy to think of “up” and “down” as moving up and
down on your screen, but that's what the “forward” and “back-
ward” commands do. These “up” and “down” commands
move up and down in your element hierarchy, moving up to an
element's container element or down into one of its contained
elements.

For example, with your cursor after the title end-tag in
Fig. 2.29, your cursor is in the sect1 element but not in any of
its contained elements. Pressing C-M-d for the sgml-down-
element command jumps your cursor to the beginning of the
first element in sect1 after the cursor's current position: the “I”
beginning the “I stuffed a” phrase. Pressing C-M-d again moves
it to the beginning of the first element inside of that para ele-
ment: the “s” in the emphasis element's “shirt.” Pressing it
again displays an error message in the minibuffer because this
emphasis element only has data, with no subelements.

When moving up the element hierarchy, you have a choice
of moving your cursor forward or backward to a point in the
live element's parent element. Starting at the emphasis ele-
ment with the word “shirt,” the next element up the hierarchy
is a para, so pressing C-c C-n for the sgml-up-element
command jumps the cursor to a position in that para element
right after the emphasis element just before the word “or.”
Pressing C-c C-n again moves it one level up from that para
element to a point after the para end-tag following the words

EDITING SGML DOCUMENTS WITH THE EMACS TEXT EDITOR

69

“Cape Horn and the Pacific.” (Again, don't forget the up/down
forward/backward distinction, or this command may seem
counter-intuitive because your cursor goes down the screen as
you move up the document hierarchy.) At this point, the lowest
level element containing the cursor's position is a sect1, so
you've moved the cursor up from an emphasis element to a
para element to a sect1 element.

To move up the hierarchy to an earlier point in the parent
element instead of a later point, press C-M-u for the sgml-
backward-up-element command. With your cursor on the
word “shirt” in Fig 2.29’s first emphasis element, this puts your
cursor after the words “stuffed a ” at the “<” that begins that
emphasis element's start-tag. Now it's in a para element;
pressing this keystroke again moves the cursor to the “<” of the
para element's start-tag preceding the “I stuffed a” sentence.
Repeating this keystroke moves it to the beginning of the sect1
start-tag, the chapter start-tag, and so on up to the beginning
of your document element.

Another great way to quickly put your cursor where you
want it is the sgml-next-data-field keystroke (C-c C-d). It
jumps your cursor to the next valid place for character data,
regardless of the structural relationship of the tags around the
cursor. For example, whether your cursor is on or before the
sect1 or title start tags in Fig. 2.30, pressing C-c C-d moves
it to the “T” beginning the phrase “The Carpet-Bag.” Pressing it
again jumps to the “I” in “I stuffed,” then the “s” in shirt, and
then the space before the word “or.” Selecting Next Data Field
from the Move menu also executes this command, although
you'll use sgml-next-data-field often enough that the key-
stroke is more efficient.

Figure 2.30. Using sgml-next-data-field

SGML CD

70

After it inserts the tags, the sgml-insert-element key-
stroke (C-c C-e) usually puts your cursor right where you want
to start typing, but sometimes you find your cursor surrounded
by tags representing enough elements within elements that the
best place for your cursor isn’t immediately obvious. (This is,
after all, SGML.) When you finish inserting and arranging the
tags that show part of a document’s structure, C-c C-d is often
the quickest way to go back to typing your document’s data
content.

Deleting, Moving, and Copying Elements
We already saw that the Emacs kill-region keystroke

(C-w), like the “cut” command in other text editors and word
processors, deletes the marked area (or, in Emacs talk, the
“region”) from your document and stores it in a temporary
buffer, available for pasting (“yanking”) to a new location with
the C-y keystroke if you plan to move the text instead of delet-
ing it.

To kill an SGML element, you could move the cursor to the
element's beginning, set the mark there, move to the end, and
press C-w, but PSGML gives you the sgml-kill-element key-
stroke (C-M-k) (and the Kill Element choice of the Modify
menu) to automate this. It kills the text from the cursor's current
location to the end of the next element contained by the live
element.

Because it also deletes any text from the cursor to the start of
the element you meant to delete, be careful where you put
your cursor before you press C-M-k. (And, remember the C-_
keystroke to undo mistakes when you use the commands
described in this section.) For example, with your cursor on the
“n” of the word “native” in Fig. 2.31, pressing C-M-k deletes
the phrase “native of <emphasis>Kokovoko</emphasis>”

EDITING SGML DOCUMENTS WITH THE EMACS TEXT EDITOR

71

Figure 2.31. Using sgml-kill-element

As with the sgml-forward-element keystroke (C-M-f),
killing the next subelement with C-M-k displays an error mes-
sage in the minibuffer if there is no next subelement. For exam-
ple, pressing it with your cursor on the word “island” in the last
example displays the message “No more elements in para ele-
ment” because the cursor is in a para that has no subelements
after the cursor's position. In fact, “sgml-kill-next-subelement”
might have been a better name for the C-M-k keystroke's com-
mand, but that's a bit long.

sgml-kill-element is handy for moving elements because
it treats the entire element as a structural unit that includes its
subelements. If you move an element that has subelements
which in turn have subelements, sgml-kill-element kills
them all into the kill buffer. In Fig. 2.31, with your cursor just
before the sect1 start-tag preceding the “Biographical” title,
pressing C-M-k grabs everything down to the sect1 end-tag
after the phrase “true places never are,” with the result shown
in Fig. 2.32.

Figure 2.32. After killing the first sect1 element

SGML CD

72

Moving the cursor after the remaining sect1 end-tag and
pressing the Emacs yank keystroke (C-y) copies the recently
killed sect1 element titled “Biographical” and all of its subele-
ment from the kill buffer to the cursor's position. This moves it
after the sect1 element that it used to precede (see Fig. 2.33).

Figure 2.33. First sect1 element yanked to a new location

Before we move on to copying elements, two other PSGML
deletion commands are worth mentioning. They don't delete
entire elements, but both speed up common operations
enough to come in handy.

The sgml-untag-element keystroke (C-c -) removes the
start- and end-tags from the live element. With your cursor on
the word “Queequeg” in Fig. 2.33, C-c - would remove the
para start- and end-tags; with your cursor just before that para
start-tag, it would remove the sect1 start- and end-tags. Select-
ing Untag Element from the Modify menu also performs this
command.

This command's greatest value is in removing tags around in-
line elements (that is, elements in mixed content). For example,
if you decide that the word “Kokovoko” in that example
shouldn't be emphasized, putting your cursor anywhere on that
word and pressing this keystroke removes the emphasis start-
and end-tags.

The sgml-kill-markup keystroke (C-c C-k) and the Kill
Markup choice of the Modify menu kill anything between the
“<“ at the cursor and its matching “>” character. This includes

EDITING SGML DOCUMENTS WITH THE EMACS TEXT EDITOR

73

markup declarations (such as comments and marked section
delimiters), tags, and processing instructions. This command is
great for deleting the comments that PSGML inserts to give you
hints about necessary elements when you have sgml-auto-
insert-required-elements set to a non-nil value, because
after you’ve followed the comment’s advice, it only clutters up
your document.

PSGML has no built-in command to delete from the cursor
position to the end of the current element, so I wrote a macro
to do this for my .emacs file. It didn’t work, so I’d like to thank
Lennart Staflin, PSGML’s author, for straightening it out for me.
Once you add the following to your .emacs file, pressing
C-c k calls the macro.

(defun sgml-kill-to-eoelement () ; kill to end of element
 (interactive)
 (let ((start (point)))
 (sgml-end-of-element)
 (kill-region start (point))))

; assign to ^Ck keystrokes
(define-key global-map "^Ck" ’sgml-kill-to-eoelement)

Copying Elements

To copy an element with all of its subelements, you have two
options. First, you could delete it using any of the keystroke
sequences just described, immediately paste it back at the cur-
sor’s position, and then paste it to any place where you want a
new copy.

Or, to copy it to the kill buffer without deleting it, you can
perform the following steps:

SGML CD

74

1. Press the sgml-backward-up-element keystroke
(C-M-u) to move your cursor to the beginning of the ele-
ment’s start-tag. If the cursor is in a subelement of the ele-
ment that you intend to copy, you may need to press this
more than once to put the cursor where you want it.

2. Press C-@ or C-space to mark that point as the beginning
of a region to copy.

3. Press the sgml-forward-element keystroke (C-M-f) to
move your cursor after the element’s end-tag.

4. Press the regular Emacs kill-ring-save keystroke (M-w)
to copy that element into the kill ring.

To summarize: C-M-u, C-@, C-M-f, and M-w. Once you get
used to this, you'll find it much quicker than the “manual” way
to copy an element into a kill ring or word processor clipboard,
where you would enter a command to search backward, find
the start-tag, mark that point as the beginning of the block to
copy, enter the command to search for the end-tag, and then
copy the region to the clipboard or kill ring.

To copy an element into the kill ring even more quickly, add
the following macro and key definition to your .emacs file and
press C-c w to copy the current element:

(defun sgml-copy-element ()
 (interactive)
 (sgml-backward-up-element)
 (let ((start (point)))
 (sgml-forward-element)
 (kill-ring-save start (point))))

; assign to ^Cw keystroke
(define-key global-map "^Cw" ’sgml-copy-element)

(I'd like to thank Lennart Staflin for helping me with this
macro as well.)

EDITING SGML DOCUMENTS WITH THE EMACS TEXT EDITOR

75

Editing Attributes
Including the PSGML menus, there are four ways to edit an

element’s attribute values. The first is to simply move your cur-
sor to the element’s start-tag and type in the attribute name and
value. For example, to add an HREF value so that the a element
in Fig. 2.34 links to a Nantucket web site,

Figure 2.34. Adding an attribute value by typing it

you could move your cursor to the “>” in the start-tag and just
type in the attribute and value as shown in Fig. 2.35.

Figure 2.35. Entered attribute value

This is no fun, and could be done with any text editor. The
other methods for editing attribute values take advantage of
PSGML features that make this easier.

The PSGML sgml-insert-attribute keystroke (C-c +)
and the Insert Attribute choice of the Markup menu are more
versatile than their names suggest because they also let you
edit existing attribute values. With your cursor on the start-tag,
end-tag, or data content of an element, pressing this keystroke
displays the prompt Attribute name: in the minibuffer. You
can take advantage of Emacs's completion feature, so you only
need to type the first few characters and then press Tab or
space to finish the attribute name. If you press one of these
keys without specifying enough letters to indicate which
attribute value to edit, PSGML displays the possibilities in a

SGML CD

76

separate window. For example, if you press Tab without first
typing any letters of the a element’s attribute names, you’ll see
the attribute name list shown in Fig. 2.36.

Figure 2.36. Listing the a element’s attributes with the sgml-insert-
attribute command

After you enter the attribute name and press Enter, the
minibuffer displays the attribute’s declared value (data type)
and current specified value (if any) and asks you to enter the
new value as shown in Fig. 2.37.

EDITING SGML DOCUMENTS WITH THE EMACS TEXT EDITOR

77

Figure 2.37. The sgml-insert-attribute command’s prompt for a
new href value

You don’t need to enter quotes around the value; PSGML
adds them for you in the document instance. Responding to the
prompt above with http://www.nantucket.gov, as shown
in Fig. 2.38,

SGML CD

78

Figure 2.38. Entering a new href value

and pressing Enter changes the markup to that shown in
Fig. 2.39.

Figure 2.39. Result of editing the attribute value

You can even use completion to enter the attribute’s value, if
the declared value is a name token group. For example, the
HTML DTD’s IMG element defines its ALIGN attribute with this
line:

ALIGN (top|middle|bottom) #IMPLIED

When editing an IMG element’s ALIGN attribute, after you
press C-c + and enter align as the attribute name, pressing
either t, m, or b (for “top,” “middle,” or “bottom”) and then Tab
enters the complete attribute value for you.

EDITING SGML DOCUMENTS WITH THE EMACS TEXT EDITOR

79

An even easier way to edit attributes, especially when edit-
ing more than one from the same element, is by using the
sgml-edit-attributes keystroke (C-c C-a) or by selecting
Edit Attributes from the Modify menu. This splits the screen to
display a new window, showing the live element’s attributes
listed on a form that you fill out. (As with sgml-insert-ele-
ment, your cursor can be on the element’s start-tag, end-tag, or
data content when you invoke this command.) Pressing
C-c C-a with your cursor on the “Nantucket” text displays the
split screen shown in Fig. 2.40.

Figure 2.40. Entering attribute values with the sgml-edit-
attributes “form”

Move your cursor to any attribute value and enter the new
value. All your cursor keys work here, and the Tab key pro-
vides a shortcut for jumping from one field to the next.

SGML CD

80

As the window tells you, pressing C-c C-c indicates that
you are finished inserting your new values into the document
markup and closes the new window. To abort the attribute win-
dow, the usual Emacs delete-window keystroke (C-x 0)
closes that window and ignores any changes made there.

Completion doesn’t work when entering attribute values, but
you don’t really need it because the attribute editing window
lists the possibilities for any element whose valid choices are
listed in the attribute definition. For example, Fig. 2.41 shows
the attribute editing window for an HTML IMG element; note
the “bottom middle top” list on the second line of the ALIGN
entry:

Figure 2.41. Attribute editing form showing possible img values

The fourth and easiest way to edit attribute values is by
selecting Insert Attribute from the Markup menu if menus are
available. Don't be misled by its name—like the sgml-
insert-attribute command automated by the C-c + key-
stroke, this menu choice lets you edit existing attribute values

EDITING SGML DOCUMENTS WITH THE EMACS TEXT EDITOR

81

as easily as inserting new ones. It displays a menu of the live
element’s attributes, and selecting any of those attributes dis-
plays the available choices. If the attribute’s declared value is a
named token group, PSGML displays each of the choices as a
choice on this menu so that you merely need to click the value
to insert it into the document instance markup (see Fig. 2.42).

Figure 2.42. Selecting attribute values from a menu

Most of these attribute value menus include Set attribute
value as a choice. Selecting it displays a prompt in the
minibuffer that waits for you to enter a value.

Finding Tagging Mistakes

We saw that, after first displaying a document instance in
Emacs, the sgml-next-trouble-spot keystroke (C-c C-o) is
the quickest way to parse the text to read its tags so that PSGML
knows the document’s structure. For many PSGML users, it’s
the first thing they do when they bring up a document.

It’s handy to repeat this keystroke several times as you edit a
document, just like saving it. (In fact, doing it just before each
save helps to ensure that you’re saving a structurally sound
document.) Move your cursor to the top of your document or

SGML CD

82

before your most recently edited block of text and press
C-c C-o. If your cursor jumps to the bottom and the message
“Ok” displays in your minibuffer, PSGML found no problems.

Remember, however, that PSGML is not a full validating
parser; it just helps you along. To validate properly, the sgml-
validate keystroke (C-c C-v) splits your screen into two win-
dows, runs a parser against your document, and puts error and
status messages in the new window. The default parser in
PSGML 0.4 beta 2 is James Clark's free nsgmls parser, which is
covered in more detail in the “Parsing and Validating SGML
Documents with nsgmls” chapter; we'll see below how to set
PSGML to run another parser if you prefer.

After you press C-c C-v (or select Validate from the SGML
menu), PSGML first displays the command it's about to run in
the minibuffer to give you the opportunity of editing it:

Validate command: nsgmls -s whalin.sgm

(The s switch tells nsgmls to only show error messages and not
to show the output of the parse.) The edit you're most likely to
make is to insert the name of a file with the document's SGML
declaration before the document's filename. nsgmls, being a
very thorough validator and parser, cares much more about the
SGML declaration than PSGML does and assumes the Refer-
ence Concrete Syntax if it doesn't find one. Because this con-
crete syntax won't allow element type names longer than eight
characters, it spits out a two-line error message for each one it
finds in your DTD and document instance, and for an instance
of more than a couple of lines, that's a lot of error messages.

When the validation command pops up in your minibuffer,
your cursor will be there, so move it to the appropriate place
and enter the name of a file with the appropriate SGML decla-
ration:

Validate command: nsgmls -s ..\catalog\docbook.dcl whalin.sgm

EDITING SGML DOCUMENTS WITH THE EMACS TEXT EDITOR

83

PSGML assumes that the parsing program is in your path. If it
can’t find it, you’ll see an error message in the output window.

Validator Output

When you press Enter to accept the validation command in
your minibuffer, PSGML splits your screen to create a new win-
dow with a buffer titled *sgml validation*. The command
executing the validator appears in that window and the valida-
tion program goes to work, as shown in Fig. 2.43.

If the word “done” eventually appears at the end of the
minibuffer message and you never see anything else happen,
then congratulations—the validator found nothing wrong with
your document.

If the validator does find errors, it lists them in the validation
message window. PSGML makes it easy to sort through the
messages and quickly find the problems that they identify in
the document. Let's add two errors to an otherwise valid file
and see what the error messages look like.

The following shows the beginning of a document that con-
forms to the DocBook DTD, with two exceptions: I put a stray
sect1 start-tag between the emphasis tags around the word
“shirt” and I gave the second para element a hair attribute it
doesn't have, with an attribute value of “red.”

SGML CD

84

Figure 2.43. sgml-validate begins validating the document

<!DOCTYPE chapter PUBLIC "-//Davenport//DTD DocBook V2.4.1//EN">
<chapter>
 <title>Gone Whalin’</title>
 <sect1>
 <title>The Carpet-Bag</title>
 <para>I stuffed a <emphasis>shirt<sect1></emphasis> or two into my
old carpet-bag, <emphasis>tucked</emphasis> it under my arm, and
<emphasis>started</emphasis> for Cape Horn and the Pacific.</para>
 <para hair=red>Quitting the good city of old Manhatto, I duly
arrive in New Bedford.</para>
 <para>It was on a Saturday night in December.</para>

EDITING SGML DOCUMENTS WITH THE EMACS TEXT EDITOR

85

After pressing C-c C-v and sending this document instance
to nsgmls, the following error messages appear in the valida-
tion window:

nsgmls:whalin.sgm:6:43:E: document type does not allow element "SECT1" here
nsgmls:whalin.sgm:6:54:E: "SECT1" not finished but containing element ended
nsgmls:whalin.sgm:6:54:E: end tag for "SECT1" omitted, but OMITTAG NO was
specified
nsgmls:whalin.sgm:6:37: start tag was here
nsgmls:whalin.sgm:9:15:E: there is no attribute "HAIR"
nsgmls:whalin.sgm:11:57:E: end tag for "SECT1" omitted, but OMITTAG NO was
specified
nsgmls:whalin.sgm:4:1: start tag was here
nsgmls:whalin.sgm:11:57:E: end tag for "CHAPTER" omitted, but OMITTAG NO was
specified
nsgmls:whalin.sgm:2:0: start tag was here

These messages have a couple of things in common with
programming-related error messages, both to our advantage:

• The ripple effect of one error causing many error messages
means that you shouldn't panic when you see a lot of error
messages. We already know that the document instance
only has two problems, so the next time you see eight
error messages, maybe they're the result of only two prob-
lems.

• Emacs has a special command, automated by a keystroke,
that quickly finds the text line that caused each error mes-
sage. We can use this to locate SGML errors.

The Emacs next-error keystroke (C-x ‘) is not a special
PSGML command, which is why it doesn't begin with C-c.
Programmers use it to find the lines in their source code that
caused each compiler error message. It jumps the cursor in
your document instance window to the line with the next error
and lines up the first error message at the top of the *sgml
validation* window (see Fig. 2.44).

SGML CD

86

The extraneous sect1 tag caused five error messages and
the hair “attribute” caused one. Error message lines without a
one-letter code after the second number provide background
information on the previous error; for example, the line after
the one about the missing sect1 end tag tells us that the sect1
start tag was on character 37 of line 6.

The “Parsing and Validating SGML Documents with nsgmls”
chapter describes nsgmls and sgmls messages in more detail.

Figure 2.44. First error of output

EDITING SGML DOCUMENTS WITH THE EMACS TEXT EDITOR

87

When multiple error messages refer to the same line, press
C-x ‘ to skip to the first error message of the next document
line that has an error, and the document window cursor jumps
to that line. (I suppose first-error-message-of-next-
source-line-with-error, while more accurate, would be
too wordy compared with next-error.) With our example,
pressing this keystroke three more times puts the document
window cursor at the ninth line and lines up the error message
about that line at the top of the validation window (see
Fig. 2.45).

Figure 2.45. Second error of output

SGML CD

88

If you press C-x ‘ when there are no more errors, a
minibuffer error message tells you “No more errors.”

Changing the Validation Command

PSGML creates a variable in the Emacs environment called
sgml-validate-command to store the command it executes
when you press C-c C-v. If you want to change this command,
you can set it to a different value in your .emacs file. For exam-
ple, let's say the Emacs describe-variable keystroke (C-h
v) shows that the sgml-validate-command variable has the
following value:

nsgmls -s %s %s

(The %s %s shows where Emacs substitutes the name of the
file being edited when it is executed. The syntax will be famil-
iar to C programmers.) If you want PSGML to use the sgmls
program instead, the following line in your .emacs file sets the
variable to run sgmls when you enter C-c C-v:

(setq sgml-validate-command "sgmls -s %s %s")

Remember how the validation command might need an
SGML declaration file? If you often use the same SGML decla-
ration file, you can add it to the .emacs line that sets the sgml-
validate-command variable so that you don't have to specify
it every time you validate a file:

(setq sgml-validate-command “sgmls -s \\sgml\\dtds\\docbook.dcl %s %s”)

(Note the use of double backslashes to put literal backslashes
in the string.) Even if you add an SGML declaration file name to
the default command, you don’t have to use that declaration
every time. After you press C-c C-v, you still have a chance to
edit the validation command before PSGML executes it.

EDITING SGML DOCUMENTS WITH THE EMACS TEXT EDITOR

89

Other Handy PSGML Features
PSGML has too many features and too many ways to take

advantage of them for this chapter to cover them all. Still, sev-
eral more valuable tricks are worth mentioning.

Displaying Markup in Different Fonts and Colors

When you use a terminal (or terminal emulation program)
and a version of Emacs that can show text in different fonts or
colors, PSGML can take advantage of this to make it easier to
distinguish between data content and different kinds of
markup. Its default settings display SGML comments in italics;
entity references in bold italics; and tags, processing instruc-
tions, the SGML and DOCTYPE declarations, and short refer-
ences in bold text.

If your version of Emacs can show different fonts, you’re
probably using a UNIX version with an XWindows terminal.
Other versions typically substitute colors for these fonts; for
example, The EMX version of GNU Emacs 19.29.2 shows com-
ments in red, entity references in yellow, and tags and other
markup in white text against its default gray background.

If you’ve issued the sgml-next-trouble-spot command
and you still don’t see any fonts or colors, you can tell Emacs
and PSGML to display markup in your choice of colors by add-
ing a few lines to your .emacs file. These lines must perform
four basic steps:

1. Create “faces” to assign to the markup categories.
2. Assign attributes to the faces.
3. Assign faces to markup categories.
4. Set the sgml-set-face variable to a non-nil value so that

PSGML knows to pay attention to the face settings.

The following .emacs code demonstrates how to assign col-
ors to comments, tags, and entity references.

SGML CD

90

;;;;; Assign colors to markup. ;;;;;

; Create faces to assign to markup categories.
(make-face ’sgml-comment-face)
(make-face ’sgml-start-tag-face)
(make-face ’sgml-end-tag-face)
(make-face ’sgml-entity-face)

; Assign attributes to faces. Background of white assumed.
(set-face-foreground ’sgml-comment-face "White") ; Comments: white on
(set-face-background ’sgml-comment-face "Gray") ; gray.
(set-face-background ’sgml-start-tag-face "Gray") ; Tags: black (default)
(set-face-background ’sgml-end-tag-face "Gray") ; on gray.
(set-face-foreground ’sgml-entity-face "White") ; Entity references:
(set-face-background ’sgml-entity-face "Black") ; white on black.

; Assign faces to markup categories.
(setq sgml-markup-faces
 ’((comment . sgml-comment-face)
 (start-tag . sgml-start-tag-face)
 (end-tag . sgml-end-tag-face)
 (entity . sgml-entity-face)))

; Tell PSGML to pay attention to face settings.
(setq sgml-set-face t)

A couple of things to note:

• To list the available colors, enter the Emacs command
list-colors-display at the M-x command prompt. The
choice varies depending on your version of Emacs.

• My choices don't seem very colorful because I picked set-
tings that make this chapter's illustrations easier to repro-
duce on the printed page.

• The above example sets the start- and end-tags to the same
color, but this is not required.

• You can set both foreground and background colors if you
wish. I left the tag and comment backgrounds and the
entity foreground color (that is, the actual text color) at the
default settings.

EDITING SGML DOCUMENTS WITH THE EMACS TEXT EDITOR

91

I only set the comment, start-tag, end-tag, and entity
appearances in the setq sgml-markup-faces part, but you
can also set the colors of doctype declarations, ignored
marked sections, ms-start for the start and ms-end for end of
non-ignored marked sections, pi for processing instructions,
sgml for the SGML declaration, and shortref for short refer-
ences. Just remember to create faces for them and set the faces’
attributes before the final step.

Normalizing Document Instances

The sgml-normalize command expands any empty tags
and fills in omitted tags in a document instance. In other
words, it makes sure that every non-empty element has a
beginning and end-tag, whether or not the DTD requires it.

Much SGML software requires normalized SGML, so this
command is a quick way to prepare your instance for use with
such programs. This command is not assigned to a keystroke
because you rarely need it more than once or twice in an edit-
ing session, so run it by selecting Normalize from the Modify
menu or by entering sgml-normalize at the minibuffer M-x
prompt.

Help Entering Entity References and Markup Declarations

The sgml-complete keystroke (M-Tab) tries to help you
complete the entity reference, markup declaration, tag, or even
data content word that you are entering when you press it.
We’ve already seen how PSGML can help you enter element
type names; M-Tab can only help you enter content text words
if you have the ispell program available (an Emacs spell-
checking utility—DOS/Windows Emacs users should see
http://cat.rpi.edu/~tibbetts/ispell_port.html for a
special version) but the entity reference and markup comple-
tion capabilities can be valuable.

SGML CD

92

PSGML knows that you’re entering an entity reference when
you’ve entered an ampersand and haven’t entered a space fol-
lowing it yet. If you press M-Tab right after entering the amper-
sand, it lists all the valid entities whose name you might be
entering in a separate window. If you follow the ampersand
with enough letters to let PSGML narrow its guess down to
one, it fills in that entity reference for you. For example, in
Fig. 2.46, let's say you only typed the “&md” just before the
emphasis start tag.

Figure 2.46. Entering the beginning of an entity reference

If you then press M-Tab and mdash is the only declared
entity beginning with the letters “md,” PSGML enters the “ash”
for you, as shown in Fig. 2.47.

Figure 2.47. Completing the entity reference with M-Tab

Note that you must still enter the semicolon to complete the
entity reference.

The sgml-complete command completes a markup decla-
ration, which you're more likely to use in a DTD than in a doc-
ument instance. For example, entering “<!” with no letters to
give a clue about which declaration you want and then press-
ing M-Tab opens up a new window and displays the following
list of possible completions:

EDITING SGML DOCUMENTS WITH THE EMACS TEXT EDITOR

93

sgml doctype
element entity
usemap shortref
notation attlist
uselink linktype
link idlink

Showing the Live Element’s Context

In the section “PSGML Startup Variables,” we saw that set-
ting the Emacs variable sgml-live-element-indicator to a
non-nil value tells PSGML to display the document type and
the current live element on the mode line. To learn more about
the role of the live element in the document's structure, the
sgml-show-context keystroke (C-c C-c) lists the live ele-
ment's ancestry from itself to the doctype, showing the live ele-
ment's parent, that element's parent, and so forth all the way
up to the top (that is, to the document element).

<sect1>
 <title>Biographical</title>
 <para>Queequeg was a native of <emphasis>Kokovoko</emphasis>, an
island far away to the West and South.</para>

For example, with your cursor on the word “Kokovoko” in
the text above, pressing C-c C-c displays the following in the
minibuffer:

#PCDATA in emphasis in para in sect1 in chapter

Selecting Show Context from the SGML menu also does this.

Quick Reference of Emacs and PSGML Keystrokes
Keep the following list handy as you get used to Emacs and

PSGML keystrokes. You'll find a copy of it in the file psgm-
qref.txt on the enclosed CD-ROM.

SGML CD

94

Table 2-1. Moving Your Cursor Around: Regular Emacs Keystrokes

Table 2-2. Moving Your Cursor Around: PSGML Keystrokes

C-f forward-char Or, “cursor right.”

C-b backward-char Or, “cursor left.”

C-Left backward-word

C-Right forward-word

C-a beginning-of-line

C-e end-of-line

C-v scroll-up Or, “page down.”

M-v previous-page Or, “page up.”

M-b backward-word

M-f forward-word

M-g goto-line Not a regular Emacs command, but
set by a line in the .emacs file
described in this chapter.

C-M-a sgml-beginning-
of-element

First data character of current ele-
ment.

C-M-e sgml-end-of-
element

Last data character of current ele-
ment.

C-c C-d sgml-next-data-
field

Next place where you can enter
data.

C-c C-n sgml-up-element Up in element hierarchy to next
character in current element's par-
ent element.

C-M-u sgml-backward-up-
element

Up in element hierarchy to begin-
ning of current element's start-tag.

EDITING SGML DOCUMENTS WITH THE EMACS TEXT EDITOR

95

Table 2-3. Adding, Deleting, and Moving Text: Regular Emacs Commands

C-M-d sgml-down-element Beginning of current element’s next
subelement.

C-M-b sgml-backward-
element

Beginning of current element’s pre-
vious subelement.

C-M-f sgml-forward-
element

Right after current element’s next
component element.

C-d delete-char

C-@ set-mark-command

C-space set-mark-command

C-w kill-region Cut marked region into “clipboard”
(kill ring buffer).

C-k kill-line From cursor to end of line.

C-x C-x exchange-point-
and-mark

Jump cursor to marked region's
other boundary.

C-y yank “Paste” from kill ring buffer to cur-
sor position.

M-d kill-word

M-i overwrite-mode A toggle. Not a regular Emacs com-
mand, but set by line in .emacs
file.

M-q fill-paragraph Justify paragraph.

M-w kill-ring-save Copy to “clipboard” (kill ring
buffer).

M-y yank-pop Replace recently yanked text with
previously killed or copied text.

SGML CD

96

Table 2-4. Adding and Removing SGML Markup and Elements

M-C-\ indent-region Indent region’s lines. In PSGML
mode, it indents tags to show ele-
ment structure.

C-q quoted-insert Insert next entered character liter-
ally, even if it’s normally part of a
command keystroke.

C-c C-e sgml-insert-
element

C-c < sgml-insert-tag Insert a start-tag. Best when adding
tags to existing text, as opposed to
adding a new element whose con-
tent you haven’t typed yet.

C-c / sgml-insert-end-
tag

Insert an end-tag. As with C-c <,
most valuable when adding tags to
existing text.

C-c C-r sgml-tag-region Add start- and end-tags around
marked region.

C-c - sgml-untag-
element

Remove live element’s start- and
end-tags. Most useful with in-line
tags.

C-c C-k sgml-kill-markup Kill a tag, comment, or other piece
of markup.

C-c
Enter

sgml-split-
element

Or, “make a new element like the
current one.” Repeat to split higher-
level elements.

C-c o sgml-comment A macro added to .emacs file as
part of the chapter.

C-M-k sgml-kill-element Kill text from cursor to end of next
subelement.

EDITING SGML DOCUMENTS WITH THE EMACS TEXT EDITOR

97

Table 2-5. Getting Help and Other Information

C-space
C-M-e
C-w

Delete remainder of current ele-
ment.

M-Tab sgml-complete Complete the entity reference,
markup declaration, tag, or con-
tent word at the cursor.

C-M-u
C-@
C-M-f
M-w

Copy current element to kill ring.

C-c C-q sgml-fill-element Justify current element.

C-c + sgml-insert-
attribute

Edit current element’s attribute val-
ues using prompts.

C-c C-a sgml-edit-
attributes

Edit current element’s attribute val-
ues using a form in a separate
Emacs window.

C-h Display help menu.

C-h ? help-for-help Describe use of on-line help.

C-h a command-apropos List commands with a certain string
in them.

C-h k describe key Describe the next key pressed after
C-h k.

C-c C-c sgml-show-context Or, after a C-c C-a, end attribute
editing.

C-x ‘ next-error Find next error in error message
window.

SGML CD

98

Table 2-6. Controlling Files, Buffers, and Windows

C-c C-o sgml-next-
trouble-spot

Move cursor to next potential
markup problem.

C-c C-v sgml-validate Send document instance to valida-
tion program.

C-x 0 delete-window Delete cursor’s current window.

C-x 1 delete-other-
windows

Make the cursor’s window the only
one.

C-x 2 split-window-
vertically

Split into a top and bottom win-
dow.

C-x o other-window Repeated pressing cycles cursor
through open windows and
minibuffer.

C-x b switch-to-buffer Display a different buffer in cursor’s
current window.

C-x C-b list-buffers List open buffers in a new window.

C-x C-s save-buffer As a disk file.

C-x C-w write-file As a disk file, under a new name if
you like.

C-x C-c save-buffers-
kill-emacs

Answer prompts about saving each
current buffer, then quit Emacs.

C-x C-f find-file Open a new or existing file.

C-x i insert-file Insert an existing disk file at the
current cursor position.

EDITING SGML DOCUMENTS WITH THE EMACS TEXT EDITOR

99

Table 2-7. Emergencies

Table 2-8. Customized Behavior

Table 2-9. Searching and Replacing

C-g keyboard-quit Abort current multi-step operation.

C-_ undo Undo last command.

C-x (start-kbd-macro Start recording a macro.

C-x) end-kbd-macro Stop recording a macro.

C-x e call-last-kbd-
macro

Execute last recorded macro.

C-u
(number)
C-x f

set-fill-column Set right margin to the (number)
column.

M-x execute-extended-
command

Display Emacs command prompt in
minibuffer.

C-s isearch-forward Incremental search forward.

C-r isearch-backward

M-% query-replace Prompts for target and replacement
text.

