
Fake Your Way through MVS

(Chapters 22 – 26 of "The Operating Sys-
tem Handbook: or, Fake Your Way
Through Minis and Mainframes")

Fake Your Way through MVS: (Chapters 22 – 26 of "The Op-
erating System Handbook: or, Fake Your Way Through
Minis and Mainframes")

Table of Contents
This Section, the Rest of the Book ..ix
I. MVS ...1

Chapter 22 MVS: An Introduction ...3
22.1 Batch Jobs ..4
22.2 Interacting with MVS ..5

22.2.1 TSO ...5
22.2.2 ISPF ..5
22.2.3 CICS ...6
22.2.4 Other MVS Components ...6

22.3 History ...6
Chapter 23 Getting Started with MVS ..9

23.1 Starting Up ...9
23.1.1 VTAM ...9
23.1.2 Logging On ..9
23.1.3 Entering Commands ...12
23.1.4 Finishing Your MVS Session ..16

23.2 File Names ...16
23.2.1 Sequential and Partitioned Data Sets17
23.2.2 Line Numbers and Data Sets ...17
23.2.3 Naming Data Sets ...18
23.2.4 Wildcards ..20

23.3 How Files Are Organized ...20
23.4 Available On-line Help ..21

Chapter 24 Using Files in MVS ...25
24.1 The Seven Most Important Commands ...25

24.1.1 Common Error Messages ..25
24.1.2 Listing Data Set Names ...27
24.1.3 Looking at Data Sets ...31
24.1.4 Copying Data Sets ..32
24.1.5 Renaming Data Sets ..33
24.1.6 Deleting Data Sets ..34
24.1.7 Allocating Data Sets ...35
24.1.8 Adding a Data Set to a Catalog ..43

Chapter 25 The MVS ISPF Text Editor ..45
25.1 The ISPF Text Editor ...45
25.2 Entering the ISPF Editor ..45

25.2.1 Customizing Your Editor's Environment49

v

25.3 Line Commands ..51
25.3.1 Adding New Lines ..52
25.3.2 Moving Your Cursor Around ..54

25.4 Inserting, Deleting, and Typing over Words and Characters55
25.4.1 Duplicating Lines ...55
25.4.2 Deleting Lines ..57
25.4.3 Copying Lines ..58
25.4.4 Moving Lines ...60

25.5 Searching for Text ...60
25.6 Saving Your Changes ..63
25.7 Quitting the ISPF Editor ..63

25.7.1 On-line Help in the Editor ...63
25.8 TSO's EDIT Text Editor ..64

25.8.1 Starting the Editor ..64
25.8.2 Creating a New Data Set ...65
25.8.3 Line Numbering and the EDIT Editor65
25.8.4 Input Mode and Edit Mode ..66
25.8.5 Displaying the Data Set's Current Contents67
25.8.6 The Current Line ..68
25.8.7 Adding New Lines ..68
25.8.8 Editing Existing Lines ...70
25.8.9 Deleting Lines ..71
25.8.10 Copying Lines ..71
25.8.11 Duplicating Lines ...72
25.8.12 Moving Lines ...72
25.8.13 Searching for Text ..73
25.8.14 Saving Your Changes ..73
25.8.15 Quitting the TSO Editor ..73
25.8.16 On-line Help and the TSO Editor74

Chapter 26 Using an MVS System ...75
26.1 Printing Data Sets ..75
26.2 Command Files ...75

26.2.1 The Automatic Logon Command File77
26.3 Communicating with Other Users ...77

26.3.1 Sending Files ...78
26.3.2 Receiving Mail and Data Sets ..81

26.4 ISPF ...82
26.4.1 Allocating Data Sets ...84
26.4.2 Copying Data Sets ..87
26.4.3 Renaming Data Sets ..89
26.4.4 Deleting Data Sets ..91
26.4.5 Displaying A Data Set's Contents ..92

vi Fake Your Way through MVS

26.4.6 Printing a Data Set ..92
26.5 A Sample MVS Session ...92

vii

viii

This Section, the Rest of the Book
This is one part of the book "Operating Systems Handbook (or, Fake Your Way Through
Minis and Mainframes)," which was originally published by McGraw-Hill as a $49.60 hard-
cover. Below you will find the preface included with the full version of the book. Once Mc-
Graw-Hill reverted the rights to me after it went out of print, I converted the original XyWrite
files to DocBook XML and then used Norm Walsh's stylesheets (see www.nwalsh.com) and
the Apache FOP program (see xml.apache.org) to convert that to Acrobat files. The six parts
of the book are all available at http://www.snee.com/bob/opsys.html:

• Part 1: Introduction. Note that this part includes a new section explaining why I didn't up-
date the book. I strongly suggest that, no matter how much or how little of the book you
can use, you glance through the whole Introduction as well. The "Comments and Sugges-
tions" part is now obsolete; my home page is now http:/www.snee.com/bob and my e-
mail address is bob@snee.com.

• Part 2: UNIX. Everything described here should apply to Linux and its relatives.

• Part 3: OpenVMS. Basically, VMS. DEC was calling it "OpenVMS" at the time.

• Part 4: OS/400. The operating system for IBM's AS/400.

• Part 5: VM/CMS. An IBM mainframe operating system.

• Part 6: MVS. Another IBM mainframe operating system.

See www.snee.com/bob for information on books I've written since. In reverse chronological
order, they are:

• XSLT Quickly is a tutorial and users guide to XSLT designed to get you writing
stylesheets as quickly as possible.

• XML: The Annotated Specification is a copy of the official W3C XML specification with
examples, terminology, and explanations of any SGML and computer science concepts
necessary for a complete understanding of the XML spec.

• SGML CD is a users guide to free SGML software, most of which can be used with XML
as well. The chapter on Emacs and PSGML, which requires no previous knowledge of
Emacs, is available on the web site in English, Russian, and Polish.

One more thing: either I couldn't figure out the XSL keep-together property or version

ix

0.18.1 of FOP doesn't implement it yet. Either way I apologize that some screen shots get
split across page breaks.

Entire book copyright 2001 Bob DuCharme all rights reserved

A 2001 Preface to a 1994 Book
McGraw-Hill published this book seven years ago, and most of the writing took place eight
years ago. I wanted to call this crash course in UNIX, VMS, OS/400, VM and VMS "Fake
Your Way Through Minis and Mainframes," but they wanted something more professional-
sounding for their Professional Book Division.

The book sold a few thousand copies, and I received several e-mails thanking me for writing
it. Once the book went out of print, I had McGraw-Hill revert the rights back to me so that I
could legally give away a free Acrobat version of the book to whoever wanted it.

So here it is. I wrote a perl script to convert the original XyWrite files to DocBook XML and
then used Norm Walsh's stylesheets and the Apache Project's FOP to create the Apache files.
I didn't try to update the content, because I currently don't have access to machines running
most of these operating systems and because I would have put it off too long anyway. Of
course, parts of the book will look dated—Linux hadn't reached release 1.0 yet when I wrote
the Unix chapter and the web was small enough to account for only 1% of Internet traffic.
Just as people now often refer to the Internet as "the web" because web browsing is the most
popular use of the Internet, in 1993 people referred to it as Usenet, because the discussion
newsgroups whose most popular web incarnation were on DejaNews (later bought by the
Google search engine folks) went by that name and was the most popular use of the Internet
at the time. Chapter 2 mentions Usenet several times.

(2006 update: now, through the cleverness of lulu.com, you can buy a hard copy version if
you want it.)

Enjoy!

Bob DuCharme

http://www.snee.com/bob

Acknowledgments
My thanks to Howard Lune, who explained to me the relationship between VM, CMS, and
CP as we killed a bottle of Dewar's at 2 in the morning in a Miami hotel room, and who has
since graciously reviewed the mainframe chapters; to Don Bonnice, whom I have never met,
but who helped me with the OS/400 chapters through the miracle of e-mail; to Ray Hood,

x This Section, the Rest of the Book

who first taught me UNIX, and, more importantly, taught me how to quickly identify and
learn the important parts of a software system; to Alex Berson, for taking the time to review
the manuscript; to Chet Ensign and Frances Gambino, who taught me to put a book together;
th Madeline—may file allocation be as distant a memory to her generation as magnetic core
memory is to ours; and most of all, to my wife Jennifer, who has patiently learned more about
minis, mainframes, Elvis Presley, Formula 1, Indy cars, and electric guitars than she ever
planned to before she met me.

Company and product names are trademarks or registered trademarks of their respective own-
ers.

Acknowledgments xi

xii

Part I. MVS

Chapter 22 MVS: An Introduction
MVS is the primary operating system on the IBM 370 series of mainframes. (You may hear
people use various initials and four-digit numbers when referring to IBM mainframes, such as
3033, 3090 or ES9000, but they are all considered hardware models of the 370 series.) MVS
is the eighteen-wheeler of operating systems. People don't use it for flash and speed; they use
it to bear large, heavy loads steadily and dependably.

When we talk about the tremendous processing power of a mainframe running MVS, we're
talking about a power different from that of supercomputers. Supercomputers do complicated
calculations at very high speeds. Designing them for the best possible calculation speed often
means sacrificing I/O (input/output) speed; the scientists who use them are more likely to
give them a complex math problem and say "grind away at this equation all night" than they
are to say "read in these 300,000 records of data, do 8 calculations on each, and then output
300,000 separate reports."

Reading and writing a tremendous amount of data and doing relatively simple calculations
with it (for example, calculating interest payments, as opposed to calculating a boat hull's op-
timum shape) is the province of mainframes running MVS. An insurance company keeping
track of its accounts, a chain of stores keeping track of its inventory, or any large company
keeping track of its employees and payroll would use MVS. Because it's a multi-user operat-
ing system, MVS lets many different users use the same programs and data at once.

Personal computer users like to make fun of big computers running MVS, calling them "dino-
saurs." While the interface may seem primitive, MVS has had many features since its intro-
duction in 1974 that people are only now trying to shoehorn into the operating systems that
control personal computer networks. MVS includes built-in recovery routines for dealing
with faulty hardware like tape drives or even (in a multi-processor environment) faulty pro-
cessors. A system running MVS can support thousands of users at once. The security of one
user's data against tampering by others is an integral part of the system, designed into it from
the ground up. (How often do you hear of a virus or a worm breaking into an MVS system?)

The primitive interface isn't the only thing that give people the wrong idea about MVS. A
given MVS installation is highly customizable, and so is the way that each user uses it. Many
different parameters can be set when doing virtually anything, and MVS doesn't always have
the default settings that we take for granted on other systems. The most efficient settings are
left to individual system administrators to figure out. Since many settings and details are site-
specific, a new user on a particular system—no matter how much MVS experience he or she
brings to that system—can't be expected to know the best way to approach that system. Don't
be embarrassed to ask questions when faced with an unfamiliar MVS installation.

3

22.1 Batch Jobs
The name "MVS," which stands for "Multiple Virtual Storage," comes from the technique it
uses to manage memory. It lets any user work with huge amounts of memory at once, making
MVS ideal for batch processing.

Running a job in batch mode is the opposite of running it interactively. Instead of starting a
program, typing in some input, waiting for the response, typing some more, and continuing
this cycle, you specify what needs to be done at the outset. You tell the system the program to
run, the data to use, and what to do with the output. Preparing a company's payroll or feeding
in thousands of inventory transactions are typical of jobs that should be run as batch jobs. (A
batch job is also known as a "background" job—you can instruct the computer to start run-
ning it and then do something else interactively while your batch job runs in the background.)

In the early days of computers, no one else could use the computer once it began a batch job.
Modern multi-tasking computers let people run other programs while a batch job runs. This
makes MVS ideal for doing huge jobs involving lots of I/O.

Two acronyms that come up when people discuss batch jobs are JES2 and JES3. These are
two versions of the Job Entry Subsystem, the part of MVS that deals with the scheduling of
batch jobs. You need not worry about JES, but you may hear people refer to it.

See the sidebar "JCL: Job Control Language" for an explanation of how we give the system
instructions for running a batch job.

JCL: Job Control Language
JCL is a language for telling a mainframe system how to deal with a batch
job. You use it to indicate the job's size, priority, output destination or destina-
tions, and files, printers, processor time, and disk space to use.

Many mainframe users use JCL regularly without ever knowing anything
about the language. How can they do this? JCL statements are often inser-
ted at the beginning and end of a file holding the program or data to submit.
While doing data entry on a CMS system years ago (although it comes up
more often on MVS systems, the batch capability of VM/CMS means that
JCL is used there as well) I knew of a file of JCL code that I had to add to the
beginning of my file and another to add to the end of my file before I submit-
ted that file as a job to run. I didn't know what any of the JCL code did; I only
knew that I had to add the JCL files to my data file before I typed the com-

4 Chapter 22 MVS: An Introduction

mand that told the computer to process the data file. This sort of arrange-
ment is not uncommon. Often, a more hardcore programmer writes a couple
of chunks of reusable JCL for less sophisticated end users who know enough
about the text editor to insert these chunks into the appropriate places in their
files.

JCL code looks strange and intimidating because it uses so many abbrevi-
ations. Since part of its job is to specify the treatment of certain files, you will
discover that several MVS TSO commands have JCL equivalents, especially
ALLOCATE.

Once you have a good handle on the different parts of a mainframe system,
you can learn how they are represented in JCL and then start writing (or at
least modifying) JCL yourself. It's valuable job skill.

22.2 Interacting with MVS
MVS offers several ways to interact with it: TSO, ISPF, and CICS.

22.2.1 TSO

TSO stands for Time Sharing Option. It's the part of MVS that lets you use the system inter-
actively; you type commands at a command line and see the response on your screen. In addi-
tion to the commands that all operating systems have to copy, rename, and delete files, TSO
also has commands to submit batch jobs and to check on their progress. Most of the next
couple chapters show you various TSO commands for dealing with MVS basics.

When IBM first introduced TSO in 1969, interactive computing was a hot new feature that re-
quired a huge portion of the computer's memory. This is where the "O" in its name comes
from: when all jobs were batch jobs, IBM made this interactive component of MVS optional.
Today, it is part of all MVS systems.

22.2.2 ISPF

ISPF stands for Interactive System Productive Facility. Some refer to it by its older name,
SPF, or by its full name of ISPF/PDF. This alternative to TSO lets you carry out most basic
functions by making menu selections and filling out forms called "panels" on your screen.
The menus vary from system to system, but you will find the same important choices avail-
able at all MVS installations.

Since ISPF often makes things easier, it has become more popular than TSO as a way to get

22.2 Interacting with MVS 5

work done in MVS. TSO, however, offers more speed and flexibility; typing out a command
that indicates what you want to do takes less time than going through a series of menus, and
the command may have options that are unavailable to you when doing the same thing from
an ISPF menu. Also, some terminals and hardware connections to an MVS system may not
provide everything necessary to run ISPF, so you should still know the basic TSO commands.
(For more information on terminal connections and the use of TSO versus ISPF, see section
23.1.1, "VTAM."

22.2.3 CICS

Developers use the Customer Information Control System to ease the development of end-
user applications. Programmers write applications in a traditional mainframe programming
language, usually COBOL, and include sections consisting of CICS commands. Before com-
piling the program, they run a program called a CICS preprocessor, which finds each CICS
statement in the program and converts it into the appropriate series of commands for the pro-
gramming language being used.

What do the CICS commands do? Usually, they accomplish tasks that are difficult in a lan-
guage like COBOL. For example, if you want to write a series of COBOL commands that
display a form to fill out on the end-user's screen, you must worry about the different makes
and models of terminals that the user might have. If you let CICS worry about this for you,
you can describe and display your input form with a minimum of commands and let the the
CICS processor turn them into the appropriate COBOL commands. CICS commands also
simplify the use of data files and the relationship between an end-user's activity and the con-
tents of the files.

22.2.4 Other MVS Components

MVS is made up of many parts. Like TSO, many started as optional features, but eventually
became standard issue at MVS installations. Some components became obsolete and are no
longer offered; others, especially those that take advantage of the extra power of more recent
versions of MVS (like MVS/ESA) are optional now.

Many popular MVS programs, useful enough to seem like part of the operating system in-
stead of being a separate application used for a specific purpose, don't even come from IBM.
The existence of these and IBM's optional MVS features mean that the list of software tools
available at one MVS site may not be the same as those available at another. You can,
however, take for granted that TSO and ISPF are always available, which is why this book
covers them.

22.3 History

6 Chapter 22 MVS: An Introduction

The history of MVS must begin with its lineage. It is descended from the forefather of mod-
ern operating systems: OS. IBM introduced OS, which stands for "Operating System," in
1964 when it announced the 360 series of computers. (For more on this, see the sidebar
"IBM's 360 Series of Mainframes" in this book's introduction.)

The history of operating systems over the next few years is really the history of IBM's im-
provements to OS, as it introduced versions that allowed more users the ability to simultan-
eously run more programs and to let each of these programs use more memory. IBM called
successive versions MFT (Multiprogramming with a Fixed number of Tasks), MVT
(Multiprogramming with a Variable number of Tasks), SVS in 1972 (Single Virtual Storage)
and MVS/XA, (Multiple Virtual Storage/Extended Architecture) in 1974.

In 1988, IBM introduced its ESA/370 mainframes, and a new version of MVS known as
MVS/ESA (Extended System Architecture) to take advantage of the increased power of the
new hardware. The version of MVS that you use has no effect on any of the basic commands
explained in this book; improvements to the operating system usually involve additional
power for users pushing the outer limits of the system.

22.3 History 7

8

Chapter 23 Getting Started with MVS
23.1 Starting Up
Logging on to an MVS system consists of two basic steps: entering your user ID and entering
your password. Before you reach the point where you log on, however, you may need to go
through an MVS component known as VTAM.

23.1.1 VTAM

VTAM (pronounced "vee-tam") stands for "Virtual Telecommunications Access Method."
The phrase "access method" comes up often in MVS. An access method is a collection of
programs that acts as an intermediary between you and something that would otherwise be
difficult and complicated to gain access to.

VTAM is essentially a telecommunications program. When you connect to the MVS system,
you might really be connecting to some hardware running VTAM, which then enables you to
connect to the MVS system. If you see a screen that lists several possible commands to type
and one of them is DIAL, then DIAL VTAM will probably connect you to the MVS system.

Sometimes you can choose between logging on to TSO directly or logging on to VTAM and
using that to access the MVS TSO system. (For example, in addition to the DIAL command,
the screen mentioned above might offer TSO userid as a choice.) Going through VTAM
might offer better control of your terminal than a direct connection to TSO. This increased
control might be reflected in the ability to run ISPF: displaying menus and forms on you
screen to fill out requires a more sophisticated relationship between a computer and a termin-
al than the ability to just scroll lines of text from the bottom of the screen to the top. Trying to
start up ISPF at the TSO prompt after connecting directly to TSO (and bypassing VTAM)
might produce an error message similar to this:

INVALID TERMINAL ACCESS METHOD, ISPF VERSION 3 REQUIRES ACF/VTAM.

In other words, the connection made allows the primitive screen control necessary to let you
enter TSO commands and watch the system's responses scroll up the screen, but not the
screen control necessary to display menus and forms that you would fill out by moving your
cursor from place to place.

23.1.2 Logging On

When you first connect to an MVS system, there are several ways to tell it that you want to
log on. The simplest is to just type the following:

9

logon

The system responds by asking you for your user ID:

IKJ56700A ENTER USERID -

Type in the ID that you were assigned when you received the account. If the system does not
recognize a user ID of "JOEUSER," it displays a message similar to this:

IKJ56420I Userid JOEUSER not authorized to use TSO

An alternate way to log on at some sites uses menus that offer you the choice of connecting to
several different systems. This screen will let you know the syntax for logging on to the sys-
tem you want. Joe User would use a command similar to this to log on to MVS's TSO com-
ponent directly:

tso joeuser

Regardless of how you typed in your user ID, once the system knows it, it then prompts you
for the password that goes with that ID:

ENTER CURRENT PASSWORD FOR JOEUSER-

When you type the characters of your password, they will probably not appear on your
screen. This security feature prevents someone from learning your password by watching you
log on.

Instead of prompting you for the password as above, the system may display a form to com-
plete with the USERID field already filled out and the cursor waiting at the PASSWORD
field for your response. Figure 23.1 shows an example.

------------------------------- TSO/E LOGON ----------------------------------

ENTER LOGON PARAMETERS BELOW: RACF LOGON PARAMETERS:

USERID ===> JOEUSER

PASSWORD ===> _ NEW PASSWORD ===>

PROCEDURE ===> GROUP IDENT ===>

ACCT NMBR ===>

10 Chapter 23 Getting Started with MVS

SIZE ===>

PERFORM ===>

COMMAND ===>

ENTER AN 'S' BEFORE EACH OPTION DESIRED BELOW:

-NOMAIL -NONOTICE -RECONNECT -OIDCARD

Figure 23.1 TSO logon form.

Don't worry about the other fields; type in your password (again, the characters do not display
as you type) and press Enter.

Once you enter a valid ID and password, MVS displays some logon messages and the TSO
READY prompt. Figure 23.2 shows a typical series of messages. (Because the system admin-
istrator can change the default prompt, it might be something other than the word "READY."
Also, the system may automatically start up ISPF instead of displaying the TSO prompt; if
not, we'll soon see how to start it up manually.)

ICH70001I JOEUSER LAST ACCESS AT 18:31:55 ON MONDAY, JANUARY 11, 1994
JOEUSER LOGON IN PROGRESS AT 09:09:30 ON JANUARY 12, 1994

* O'Rourke Enterprises MVS/XA *

* Use CLASS=T for all server batch JOBs or they may be cancelled. *

* Please report any problems to the Help Desk at 878-4531. *

*** N e w s : ***

* Due to a possible security breach, all users must change their *
* passwords by Thursday, January 14. *

You have no messages or data sets to receive.
**** NATIVE TSO READY ****
READY

23.1.2 Logging On 11

Figure 23.2 Typical opening series of messages upon logon.

The messages appearing in upper case letters are from the system, telling you some statistics
about this logon and the same user ID's last logon. The rest of the messages are from the sys-
tem administrator, to keep you abreast of news about the system. The last line, READY, is the
TSO command-line prompt. It means that the system is ready for you to type in TSO com-
mands.

23.1.2.1 Reconnecting

Let's say you're accidentally disconnected from the system and you try to log on again. It may
tell you this

IKJ56425I LOGON REJECTED, USERID JOEUSER IN USE
IKJ56400A ENTER LOGON OR LOGOFF-

because you didn't log off properly. This isn't a problem; MVS provides the RECON option to
the LOGON command, which means "reconnect me to my earlier session." If you respond to
the above message with

logon joeuser recon

the system prompts you for your password and reconnects you, displaying the same screen
you were viewing when you were disconnected.

If you log on by filling out the form displayed in Figure 23.1, note the line at the bottom that
says, "ENTER AN 'S' BEFORE EACH OPTION DESIRED BELOW." (The "S" stands for
"Select.") One of the options is "RECONNECT," so after you enter your password and before
you press Enter, move your cursor to the RECONNECT option by repeatedly pressing the
Tab key. If you type the letter "S" there and press Enter, the system reacts as if you had
entered

logon joeuser recon

at the TSO prompt.

23.1.3 Entering Commands

When you start your session, and at any time throughout, the READY prompt shows that the

12 Chapter 23 Getting Started with MVS

system is ready for you to type in a TSO command.

When you type a command, it appears on the line under the READY prompt. After you press
Enter, the command's output appears under the typed command. If there is too much to fit on
the screen, asterisks appear on the last line to tell you that there is more to see. For example,
the LISTCAT command lists file names (they're really called data sets; more on this later).
Figure 23.3 shows the LISTCAT command entered when there isn't enough room for all of
its output on the screen.

ICH70001I JOEUSER LAST ACCESS AT 18:31:55 ON MONDAY, JANUARY 11, 1994
JOEUSER LOGON IN PROGRESS AT 09:09:30 ON JANUARY 12, 1994

* Use CLASS=T for all server batch JOBs or they may be cancelled. *

* Please report any problems to the Help Desk at 878-4531. *

*** N e w s : ***

* Due to a recent security breach, all users must change their *
* passwords by Thursday, January 14. *

You have no messages or data sets to receive.
**** NATIVE TSO READY ****
READY
listcat
IN CATALOG:SYS1.BGCCTLG
JOEUSER.ACCNTING.CLIST
JOEUSER.ACCNTING.COBOL
JOEUSER.APL.ASM
JOEUSER.CICS.CNTL
JOEUSER.ERRORS.DATA
JOEUSER.FMU.DATA
JOEUSER.HLIPRINT.DATA
JOEUSER.HLIPRINT.FOCUS
JOEUSER.INVENTRY.DATA

Figure 23.3 Beginning of LISTCAT output when remainder doesn't fit on screen.

When you press Enter, more of the command's output appears. If the remaining output doesn't
fit on the second screen, the asterisks will appear at the bottom again, waiting for you to press
Enter. When you do reach the end, the READY prompt reappears, as shown in Figure 23.4.

23.1.3 Entering Commands 13

JOEUSER.INVENTRY.COBOL
JOEUSER.ACCNTING.COBOL.BACKUP
JOEUSER.ISPF.ISPPROF
JOEUSER.JU.ASM
JOEUSER.JU.CLIST
JOEUSER.LOG.MISC
JOEUSER.MASTER.DATA
JOEUSER.OFFLINE.DATA
JOEUSER.PROD.PROCLIB
JOEUSER.RDBAPP.DATA
JOEUSER.RDBAPP.OBJ
JOEUSER.RDBAPP.REXX
JOEUSER.TEST.CNTL
JOEUSER.TEST.ASM
READY

Figure 23.4 End of LISTCAT output.

23.1.3.1 Aborting Screen Output

If you find yourself repeatedly pressing Enter and regretting that you entered the command
that produced so much output, you have an alternative to pressing Enter: the PA1 key. Press-
ing it puts you right back at the TSO READY prompt after it clears the screen, aborting the
output of any command currently putting information on the screen. (When using a PC with a
terminal emulation program instead of an actual mainframe terminal, check the emulation
program's documentation to see which key acts as PA1.)

23.1.3.2 Command Parameters

Many commands need some information from you in order to do their job. For instance,
when you type the COPY command, the system needs to know the name of the data set you
want to copy and the name you want to assign to your new copy. As you'll see in the section
on this command, you could type

copy old.dsname new.dsname

but if you just type

copy

by itself, MVS turns out to be fairly user-friendly about this abbreviated syntax—it prompts
you for the information it needs:

14 Chapter 23 Getting Started with MVS

copy
ENTER 'FROM' DATA SET NAME -
jan13.memo
ENTER 'TO' DATA SET NAME -
jan13.memo.backup
READY

(VMS also does this, although MVS and VMS are completely different operating systems
from completely different companies. IBM's VM and Wang's VS add to the name confu-
sion—the fact that MVS, VS, VMS, and VM are four unrelated operating systems from three
different companies is a big part of what makes the mini and mainframe world so confusing.)

23.1.3.3 Long Commands

Complicated commands may take up more than one whole line of your screen. If this hap-
pens, you can indicate that your command continues on the next line with the plus (+) or
minus (-) sign. For example, listing the contents of the TESTSEQ1.DATA data set by enter-
ing

list +
testseq1.data

has the same effect as entering

list testseq1.data

Of course, there wouldn't be much point to breaking up a command this short over more than
one line.

23.1.3.4 Case Sensitivity

TSO maps all entered commands to upper case, so it doesn't matter whether you type

LIST TESTSEQ1.DATA

or

LIST testseq1.data

or

list testseq1.data

23.1.3 Entering Commands 15

at the READY prompt. They all list the contents of the data set called TESTSEQ1.DATA. In
the TSO examples in this book, entered commands are shown in lower case to make it easier
for you to distinguish between lines that the user types and lines that the system displays,
which almost always appear in upper case.

23.1.3.5 Command-Line Options

IBM's on-line help and literature about TSO refer to command-line options as "operands."
You don't need any special character to indicate that something you add to the command line
is an operand for that command. For example, the LIST command's NONUM option indicates
that you don't want line numbers listed with a data set's contents. You add it onto the com-
mand just as it is, with no "-" (as in UNIX) or "/" (as in VMS) or "(" (as in CMS) to indicate
that it is a special option for the LIST command:

list testseq1.data nonum

Certain TSO commands have options that need extra information from you. This information
is enclosed in parentheses right after the option's name. For example, the ALLOCATE com-
mand, which creates a new data set or indicates an existing data set for a program to use,
sometimes takes the following form:

allocate dataset(dsname)

In this example, dsname represents the name of the data set to allocate. You would substi-
tute a data set name between the parentheses.

Whether you enter an existing data set name or a new one depends on your purpose in enter-
ing the ALLOCATE command. We'll see more about this in section 24.1.7, "Allocating Data
Sets." We'll also see that this command can take many more options than this—enough to
give you practice at using the "+" character to spread your ALLOCATE command over two
lines, as described in section 23.1.3.3, "Long Commands."

23.1.4 Finishing Your MVS Session

Logging off is simple: just type

logoff

at the TSO READY prompt. The system then displays a message telling you the user ID being
logged off, the time, and the date.

23.2 File Names

16 Chapter 23 Getting Started with MVS

Files in MVS are known as data sets. Although most books on MVS tell you that "data set" is
the term used for a file, keep in mind that the terms are not completely interchangeable. The
word "file" has a specific meaning in MVS: when you use the ALLOCATE command to indic-
ate a data set that a particular program will use, FILE is a synonym for DDNAME, or "data
definition name." The program uses the ddname to refer to the data set. For example, if a
database program saves report output in a data set instead of displaying it on the screen, it
might expect the data set to have a DDNAME of RPTOUT. If you wanted the data saved in a
data set called JOEUSER.SUMRPT.TEXT, you would allocate this data set with a DDNAME
of RPTOUT. For more on this, see section 24.1.7, "Allocating Data Sets."

23.2.1 Sequential and Partitioned Data Sets

There are two kinds of data sets: sequential and partitioned. (Actually, there's a third called
VSAM—pronounced "vee-sam"—used to store data for database applications, but that's a
more advanced topic.) A sequential data set is like a regular file in other operating systems; a
partitioned data set (also known as a PDS, or a "library") is like a group of files under one
name. Each one of the files, or "members" of a PDS, is basically the same as a sequential data
set. In fact, we'll see with the COPY command how easily you can take an existing sequential
data set and make it a member of an existing partitioned data set.

Because a partitioned data set is a collection of "files," it's tempting to compare it to a direct-
ory or folder on another operating system. In practice, however, MVS users do not really use
partitioned data sets this way. A single PDS usually holds a group of files that all serve the
same purpose within their respective contexts and that all have the same characteristics (for
example, record length, maximum size, and the units in which their size is defined). In VM/
CMS, this would be like grouping together a collection of files with the same filetype; in oth-
er operating systems, it would be like grouping files with the same extension. For example,
one PDS might hold several CLISTs (TSO command procedures). Another could hold the
data files used by a certain database management program, and another could hold a collec-
tion of report specifications for using data from that program.

Section 23.3, "How Files Are Organized," describes the role of partitioned data sets in greater
detail.

23.2.2 Line Numbers and Data Sets

You may have seen text editors on some operating systems that include line numbers next to
the text. The two text editors used in MVS also do this, but there's an important difference
when compared with other operating systems: MVS editors save the numbers with the data
sets. If this ever presents a problem, most TSO commands offer an operand that lets you omit
the line numbers—for example, when you print or copy a numbered data set.

23.2.1 Sequential and Partitioned Data
Sets 17

23.2.3 Naming Data Sets

The rules for naming sequential and partitioned data sets are the same. (As we'll see, referring
to a particular member of a PDS requires something extra added to the PDS name.)

A data set name is composed of pieces called qualifiers. A period separates each qualifier.
For data sets that you create, MVS adds your user ID as the first, or "high-level" qualifier. For
Joe User, the full name (or, in MVS parlance, the "fully qualified data set name") of a data set
that he named MYFILE.TEXT would be JOEUSER.MYFILE.TEXT.

Some MVS users call this high-level qualifier the data set's "prefix." It's not always the user
ID of the person who created it; it could be the name of the application that uses it or
something else assigned by the system. The data sets that you create, however, nearly always
have your user ID as their high-level qualifier.

When you refer to a data set, you rarely include the high-level qualifier in its name. The sys-
tem assumes that your user ID is it. If you are including the high-level qualifier when specify-
ing a data set name and don't want TSO to automatically add one, enclose the data set name
in apostrophes. For a user ID of JOEUSER, this tells the system that you've added the
"JOEUSER" yourself, like in the following:

'joeuser.myfile.text'

MVS users refer to the apostrophe as a "tick" and the period as a "dot," so if you were reading
the above data set name out loud to someone you would say "tick joeuser dot myfile dot text
tick."

You enclose a data set name in "ticks" to refer to a data set that is not your own, such as a
data set that another user told you to use. Remember, all data sets have a high-level qualifier;
if you enclose a data set name in apostrophes and leave out the high-level qualifier, or use an
invalid one, MVS rejects it.

A fully qualified data set name can have as many parts (that is, qualifiers) as you want, as
long as the total number of characters (including the periods that separate the qualifiers) does
not exceed 44 and no qualifier has more than eight characters. If Joe User's user ID is
JOEUSER, this leaves him with 36 characters for the rest of his fully-qualified data set
names, because MVS automatically adds his seven-character user ID and a period to the be-
ginning of any data set he creates.

Qualifiers can contain letters and numbers, and must begin with a letter. The only other al-
lowable characters are @, $, and #. (Note that the underscore, which is OK on most operating
systems, cannot be used in MVS.) The case of alphabetical characters doesn't matter, since
lower case letters will be converted to upper case.

18 Chapter 23 Getting Started with MVS

Although your data set name could have over a dozen qualifiers, three is the most popular
number. ISPF makes life easier for people who use data set names with three qualifiers; it
even has a name for each of the three:

project The user ID, or high-level qualifier.

group The name that you make up to distinguish this data set from oth-
ers with the same project and type.

type The type of the data set—much like the concept of a file's type in
VMS, its filetype in CMS, or its extension in DOS or UNIX.

For example, if Joe User had written three programs in the COBOL programming language,
he might store them in data sets named JOEUSER.INPUT.COBOL,
JOEUSER.SUMRPT.COBOL, and JOEUSER.DETRPT.COBOL. He could have named the
last one JOEUSER.DETAIL.REPORT.VER1.COBOL, but the three-part name is more con-
ventional.

Some MVS users call the type the "low-level qualifier." This applies not only to three-part
data set names, but to all data set names with two or more parts—in other words, all data set
names. The last part, the part that identifies what kind of data set it is, is always considered
the low-level qualifier. (In the previous paragraph, all the data set names listed as examples
have a low-level qualifier of COBOL—even JOEUSER.DETAIL.REPORT.VER1.COBOL.)
We call the qualifiers in between intermediate qualifiers.

23.2.3.1 The Members of a Partitioned Data Set

The rules for naming a partitioned data set are the same as those for naming a sequential data
set. Since a PDS is actually a collection of data sets, we also need a way to refer to a particu-
lar member of the PDS.

A member name goes right after the PDS name in parentheses. For example, if Joe User
keeps his COBOL programs as members of a partitioned data set called
JOEUSER.SOURCE.COBOL, the member SUMRPT actually has the full name
JOEUSER.SOURCE.COBOL(SUMRPT). Joe refers to it as SOURCE.COBOL(SUMRPT),
knowing that the system adds the JOEUSER part for him. If he wants to refer to the fully-
qualified name by enclosing it in apostrophes, he calls it
'JOEUSER.SOURCE.COBOL(SUMRPT)'.

Member names must follow the same rules as qualifier names: they can be up to eight charac-
ters long, they can contain letters, numbers and the @, $, and # symbols, and they must begin
with a letter of the alphabet.

23.2.3 Naming Data Sets 19

The limit of 44 characters on a data set name does not include the characters of a member
name. A PDS with a 44-character name can still have members with eight-character names.

23.2.4 Wildcards

The only wildcard in TSO is the asterisk (*). You can use it to represent any single qualifier
in a data set name. For example, the LISTCAT command can use the ENTRIES operand to
list information about a single data set, as with the following:

listcat entries(dept.data)

Substituting an asterisk for one of the qualifiers means "perform this command on any data
set that matches the other qualifiers, with anything in the asterisk's position." The following
tells TSO to list the names of the data sets with "DEPT" as the second qualifier (remember,
"JOEUSER" is the first) and anything as the third:

listcat entries(dept.*)

When you write out the data set name, you cannot make the asterisk the first part of the data
set name. For example, to list all the data sets having "DATA" as their last qualifier, you
could not enter this:

listcat entries(*.data)

To get around this, use fully-qualified data set names. Don't forget the apostrophes:

listcat entries('joeuser.*.data')

Remember, the use of the asterisk as a wildcard is not restricted to the LISTCAT command.
Others, including COPY, RENAME, and DELETE can also use it.

23.3 How Files Are Organized
MVS keeps track of data sets in lists of their names and locations called catalogs. The sys-
tem's master catalog stores a list of the names and locations of the user ID catalogs, and your
ID's catalog is the list of your data sets. (Note that the command for listing data set names is
LISTCAT; you're asking the system to list the contents of a catalog.)

The actual storage device that holds a particular data set is identified by a unique number
called a Volume Serial Number, or VOLSER (pronounced "voll-sear"). Part of the purpose of
the catalog system is to keep you from worrying about VOLSERs. On some ISPF screens
where you enter a data set name, one line asks you to enter the "VOLUME SERIAL (IF NOT
CATALOGUED)." In other words, it only needs to know this information if the data set is

20 Chapter 23 Getting Started with MVS

not in any catalog. (To see the Volume Serial Number of your data sets when you list their
names, add the VOLUME operand to the LISTCAT command. See section 24.1.2, "Listing
Data Set Names," for more on LISTCAT.)

A related term is VTOC, the Volume Table of Contents, a special data set that serves as the
table of contents for a particular storage device. As with the VOLSER, advanced users some-
times use the VTOC to access their data more directly, but the use of catalogs relieves begin-
ners from the need to worry about VTOCs. If it comes up in conversation, remember to pro-
nounce it "vee-tok" and people will assume you know what you're talking about.

23.4 Available On-line Help
TSO's on-line is neither terrific nor terrible. Help information appears in all upper case letters,
which is rather primitive, but it gives you syntax and a description for any command that you
can name.

If you don't know command names, you can use the on-line help to find them. Typing HELP
all by itself at the TSO READY prompt displays a list of TSO commands, with a brief descrip-
tion of each one's purpose. Figure 23.5 shows the first of these screens displayed.

READY
help
LANGUAGE PROCESSING COMMANDS:

ASM INVOKE ASSEMBLER PROMPTER AND ASSEMBLER F COMPILER.
CALC INVOKE ITF:PL/1 PROCESSOR FOR DESK CALCULATOR MODE.
COBOL INVOKE COBOL PROMPTER AND ANS COBOL COMPILER.
FORT INVOKE FORTRAN PROMPTER AND FORTRAN IV G1 COMPILER.

PROGRAM CONTROL COMMANDS:

CALL LOAD AND EXECUTE THE SPECIFIED LOAD MODULE.
LINK INVOKE LINK PROMPTER AND LINKAGE EDITOR.
LOADGO LOAD AND EXECUTE PROGRAM.
RUN COMPILE, LOAD, AND EXECUTE PROGRAM.
TEST TEST USER PROGRAM.
TESTAUTH TEST APF AUTHORIZED PROGRAMS.

DATA MANAGEMENT COMMANDS:

ALLOCATE ALLOCATE A DATA SET WITH OR WITHOUT AN ATTRIBUTE
LIST OF DCB PARAMETERS.

ALTLIB DEFINE OPTIONAL, USER-LEVEL OR APPLICATION-LEVEL SETS OF

23.4 Available On-line Help 21

Figure 23.5 First TSO help screen.

For more detailed help about a specific command, enter the command's name as an operand
to the HELP command. Figure 23.6 shows the HELP command being entered with LISTCAT
as an operand, and the beginning of the HELP command's output.

help listcat

FUNCTION -
THE LISTCAT COMMAND LISTS ENTRIES FROM EITHER THE MASTER CATALOG OR
A USER CATALOG.

SYNTAX -
LISTCAT CATALOG('CATNAME/PASSWORD')

FILE('DNAME')
OUTFILE('DNAME')
LEVEL('LEVEL') | ENTRIES('ENTRYNAME/PASSWORD' ...)
CREATION('NNNN')
EXPIRATION('NNNN')
NOTUSABLE
CLUSTER DATA INDEX ALIAS SPACE NONVSAM

USERCATALOG GENERATIONDATAGROUP PAGESPACE
ALTERNATEINDEX PATH

ALL | NAME | HISTORY | VOLUME | ALLOCATION
REQUIRED - NONE
DEFAULTS - NAME
ABBREVIATIONS -

NOTE - IN ADDITION TO NORMAL TSO SHORT FORMS, THESE ARE ACCEPTED.

Figure 23.6 Command and output for help about LISTCAT.

Again, the asterisks at the bottom show that you're only looking at the first screen of a fairly
extensive description of the command. The list of possible syntax variations alone take up al-
most the entire screen.

The separate lines show options that you may add after the LISTCAT command. When you
see several options listed on the same line, such as

22 Chapter 23 Getting Started with MVS

ALL | NAME | HISTORY | VOLUME | ALLOCATION

in Figure 23.6, that means you can choose one of these, but not more than one.

OPERANDS -
CATALOG('CATNAME/PASSWORD')

- SPECIFIES THE NAME OF THE CATALOG CONTAINING THE ENTRIES
TO BE LISTED.

'CATNAME'
- NAME OF THE CATALOG CONTAINING THE ENTRIES TO BE

LISTED.
'PASSWORD'

- PASSWORD OF THE CATALOG CONTAINING THE ENTRIES TO BE
LISTED.

REQUIRED - 'CATNAME'
FILE('DNAME')

- IDENTIFIES THE VOLUMES THAT CONTAIN THE CATALOG
ENTRIES TO BE LISTED.

'DNAME' - NAME OF THE DD STATEMENT THAT IDENTIFIES THE VOLUMES
CONTAINING CATALOG ENTRIES TO BE LISTED.

OUTFILE('DNAME')
- IDENTIFIES THE ALTERNATE OUTPUT DATA SET.

'DNAME' - NAME OF THE JCL STATEMENT THAT IDENTIFIES THE
ALTERNATE OUTPUT DATA SET.

LEVEL('LEVEL')
- SPECIFIES THE LEVEL OF ENTRY NAMES TO BE LISTED.

'LEVEL' - LEVEL OF ENTRY NAMES TO BE LISTED.

Figure 23.7 More help for LISTCAT.

So what do all these options mean? This is revealed after the syntax. For example, Figure
23.7 shows some later help material for the LISTCAT command; each option has at least one
line describing it.

23.4 Available On-line Help 23

24

Chapter 24 Using Files in MVS
24.1 The Seven Most Important Commands
The seven most important TSO commands in MVS are:

LISTCAT lists the data sets in a catalog.

LISTDS lists the members in a partitioned data set.

LIST displays the contents of data sets.

COPY copies data sets and data set members.

RENAME renames data sets and data set members.

DELETE deletes data sets and data set members.

ALLOCATE creates and provides access to data sets.

Remember, in addition to performing these functions with TSO commands, you can use IS-
PF. TSO, however, gives you more flexibility. In other words, if you see a lot of potential op-
tions when you enter "HELP" followed by the name of one of the commands in this section,
ISPF won't necessarily have an equivalent to all of those options.

Nearly all of the commands described here require you to name the data set you wish to act
on. The examples leave out the high-level qualifier, but they all work the same way if you in-
clude the high-level qualifier—as long as you remember to put it between apostrophes. For
example, when logged on to Joe User's ID, there's no difference between entering

delete memos.text

and

delete 'joeuser.memos.text'

24.1.1 Common Error Messages

The simplest mistake to make at the TSO command line is typing in the name of a "com-
mand" that doesn't exist at the READY prompt. If you type in such a command, like

hlep listcat

25

when you meant to type help listcat, TSO tells you:

COMMAND HLEP NOT FOUND

In other words, TSO has no command called HLEP.

A classic mistake on many systems is entering a command that expects command-line para-
meters without entering as many parameters as it expects. (For example, entering the COPY
command without saying what you want to copy and what to call the copy.) When using
TSO, this is not a mistake; as we saw in section 23.1.3.2, "Command Parameters," TSO
prompts you for the rest of the necessary information.

If you try to perform a command on a non-existent data set, you will find that TSO has a vari-
ety of ways to tell you that there's a problem. Trying to rename a non-existent data set called
MYNOTES.TEXT gives you the following error message

DATA SET MYNOTES.TEXT NOT IN CATALOG OR AMOUNT OF DATASETS EXCEEDS WORKAREA FOR GENERIC RENAME

while trying to copy the same non-existent data set gives you a much terser error message:

COPY ENDED DUE TO ERROR

The justification for this disparity in error message information goes something like this: real
TSO commands, like RENAME, get reasonable error messages, but COPY is not a real TSO
command. It's actually a TSO utility program, but it's so useful that it's installed wherever
TSO is installed—sort of like ISPF.

Another error message is worth examining because of its use of MVS terminology. Try to de-
lete a non-existent data set called MYNOTES.TXT and you'll see

ERROR QUALIFYING JOEUSER.MYNOTES.TEXT

The system first adds the high-level qualifier (the user's ID) so that it has the complete data
set name, and then it uses this name to find the data set. Obviously, it fails; there's no such
data set in the JOEUSER catalog. (You'll get the same error message for a data set that seems
to exist, but just isn't part of your catalog. See section 24.1.8, "Adding a Data Set to a Cata-
log," for more on this.)

If you try to do something to a data set and leave off the last qualifier, TSO displays the final
qualifiers for data sets that begin with whatever you entered. For example, if you have data
sets named APRIL.MEMOS.SENT and APRIL.MEMOS.RECEIVED and you enter the
command

26 Chapter 24 Using Files in MVS

delete april.memos

TSO responds like this:

QUALIFIERS FOR DATA SET APRIL.MEMOS ARE
SENT RECEIVED
ENTER QUALIFIER-

You then enter the final qualifier of the data set that you want to delete and press Enter.

TSO reacts similarly when it understands a command name, but not one of its operands. For
example, section 24.1.2.2, "Listing a Partitioned Data Set's Members," shows how you can
list a partitioned data set's members by adding the MEM operand to the LISTDS command
after the data set's name. If you misspelled it like the following,

listds setup.clist mom

TSO responds with the following:

INVALID KEYWORD, MOM
REENTER THIS OPERAND -

This gives you the chance to enter the wrong part again. If you really thought that MOM was
right and you're not sure what to enter now, enter a question mark and TSO responds with a
description of the proper syntax for the command you entered:

?
SYNTAX -

LISTDS 'DSLIST' STATUS HISTORY MEMBERS LABEL
CATALOG('CAT.NAME') LEVEL

REQUIRED - 'DSLIST'
DEFAULTS - NONE

24.1.2 Listing Data Set Names

TSO users use two commands to list data set names: LISTCAT lists the names of data sets in
a catalog, and LISTDS lists a partitioned data set's members.

24.1.2.1 Listing a Catalog's Data Sets

If you enter the LISTCAT command without any operands, it lists the names of data sets in
your user ID's catalog, as shown in Figure 24.1.

24.1.2 Listing Data Set Names 27

listc
IN CATALOG:SYS1.BGCCTLG
JOEUSER.ACCNTING.CLIST
JOEUSER.ACCNTING.COBOL
JOEUSER.APL.ASM
JOEUSER.CICS.CNTL
JOEUSER.ERRORS.DATA
JOEUSER.FMU.DATA
JOEUSER.HLIPRINT.DATA
JOEUSER.HLIPRINT.FOCUS
JOEUSER.INVENTRY.DATA
JOEUSER.INVENTRY.COBOL
JOEUSER.INVENTRY.COBOL.BACKUP
JOEUSER.ISPF.ISPPROF
JOEUSER.JU.ASM
JOEUSER.JU.CLIST
JOEUSER.JU.CLIST1A
JOEUSER.JU.CNTL
JOEUSER.JU.COBOL
JOEUSER.JU.DATA
JOEUSER.JU.DS14
JOEUSER.JU.LOAD

Figure 24.1 Sample output of the LISTCAT command.

(The three asterisks on the last line show that TSO is only displaying the first screenful of
names, not the entire list.) Note how only the first five letters of "LISTCAT" were entered.
This abbreviation is all you need.

Two operands to the LISTCAT command let you narrow down the list of data set names to
display. The ENTRIES operand takes a data set name as an argument, in parentheses, and
lists the name of the data set and the name of the catalog that holds information about the data
set. The following command

listc entries(inventry.cobol)

produces the following output:

NONVSAM ------- JOEUSER.INVENTRY.COBOL
IN-CAT --- SYS1.BGCCTLG

28 Chapter 24 Using Files in MVS

The ENTRIES operand is more useful when you use an asterisk as a wildcard in the data set
name included in the parentheses. Substituting an asterisk for one (and only one) of the data
set name qualifiers causes the LISTCAT command to list all the data set names that have any
qualifier in the asterisk's position, and whose other qualifiers match the corresponding ones in
the data set name between the parentheses. See section 23.2.4, "Wildcards," for examples.

The LEVEL operand tells the LISTCAT command to list data set names that begin with the
qualifier (or qualifiers) entered as a parameter. For example, entering

listc level(joeuser.inventry)

produces the following output:

JOEUSER.INVENTRY.DATA
JOEUSER.INVENTRY.COBOL
JOEUSER.INVENTRY.COBOL.BACKUP

You can use the LEVEL operand to list the data set names in another user ID. For example,
entering

listc level(mjones)

lists all the data set names in the MJONES catalog—if you have permission to list them.
Either Mary Jones must authorize you to list them, or you must be in her group. MVS's high
priority on data security means that your default access to the list of another user's data sets is
no access. For an extra touch of heavy security, a warning message may be mailed to Mary
telling her that you tried to list the names of her data sets.

24.1.2.2 Listing a Partitioned Data Set's Members

Use the LISTDS command to determine if a data set is sequential or partitioned, and if parti-
tioned, the names of its members.

When you enter this command with one data set name as a parameter, like this,

listds errors.data

you'll see output similar to this:

--RECFM-LRECL-BLKSIZE-DSORG
FB 80 23200 PO

--VOLUMES--
USERMB

24.1.2 Listing Data Set Names 29

The most important part of this right now is the data set organization, designated by
"DSORG." The "PO" means that INVENTRY.COBOL is a partitioned data set; if it was se-
quential, the DSORG value would be PS. Other values may show up here, for things like spe-
cific types of database data sets, but PO and PS are the DSORG values that you will see most
often for data sets in your user ID.

To list the members of a partitioned data set, add the MEMBERS (or just MEM) operand to the
LISTDS commands. Figure 24.2 shows an example.

listds inventry.cobol mem
JOEUSER.INVENTRY.COBOL
--RECFM-LRECL-BLKSIZE-DSORG
FB 80 23200 PO

--VOLUMES--
USERMB

--MEMBERS--
SETUP
ADDNEW
DELETE
SUMRPT

Figure 24.2 Listing a data set's members by adding MEM to the LISTDS command.

Adding the MEM operand when using LISTDS with a sequential data set has no effect—the
command lists information about the data set as if you hadn't included the MEM operand. Fig-
ure 24.3 shows an example.

listds autoexec.bat mem
JOEUSER.AUTOEXEC.BAT
--RECFM-LRECL-BLKSIZE-DSORG
VB 84 6233 PS

--VOLUMES--
USERMC

Figure 24.3 Adding MEM to LISTDS with a sequential data set.

30 Chapter 24 Using Files in MVS

As with the ENTRIES operand of the LISTCAT command, you can substitute the asterisk
wildcard for one of the qualifiers in the specified data set name. This lets you list information
about more than one data set, but only if their names have several qualifiers in common.

24.1.3 Looking at Data Sets

Use the LIST command to display the contents of a data set. Like the COPY command,
LIST is technically a utility and not part of TSO. It's so basic and useful, however, that you
can almost take for granted that it is installed on the system you're using.

Using LIST is simple: just add the name of the data set you want to display. For example,
typing

list schedule.text

displays the contents of the data set SCHEDULE.TEXT:

SCHEDULE.TEXT
00010 APRIL 7
00020 10 AM meet Mary Ann in conference room about new office space
00030 1 PM Lunch with Jimmy
00040 3:30 meet Frank in his office. Bring budget notes.
READY

The LIST command is a good example of how you can treat a partitioned data set's individu-
al members like sequential data sets. To view the contents of the APRIL6 member of the
MEMOS.TEXT partitioned data set, type the following:

list memos.text(april6)

The system displays the contents of that member:

MEMOS.TEXT(APRIL6)
Joe -
Can you come to my office tomorrow at 3:30 to discuss
the proposed budget? If not, let me know as soon as
possible so that I can find another time that is
convenient for Jack and Mary.
- Frank

If you try to list a partitioned data set without specifying a member name, MVS looks for a
member named TEMPNAME in that PDS and lists it if found. Otherwise, it tells you that it
couldn't find it:

24.1.3 Looking at Data Sets 31

MEMBER TEMPNAME NOT IN DATA SET MEMOS.TEXT+

24.1.4 Copying Data Sets

In its simplest form, copying data sets is similar to copying files on most other operating sys-
tems. Entering

copy schedule.text schedule.text.backup

instructs the system to make a copy of SCHEDULE.TEXT called SCHED-
ULE.TEXT.BACKUP. If a data set named SCHEDULE.TEXT.BACKUP already exists, TSO
copies SCHEDULE.TEXT right on top of it without displaying any warning message, assum-
ing that the two data sets have a compatible data set organization (DSORG).

Some data sets include line numbers and some don't. The default action of COPY is to include
the line numbers, and if the source data set has none, you might see the following error mes-
sage:

COPY TERMINATED, RENUMBERING ERROR+

If this happens, enter the copy operation again, but include the operand that instructs TSO not
to bother with any line numbers in the source data set:

copy schedule.text schedule.text.backup nonum

24.1.4.1 Copying and Partitioned Data Sets

Copying an entire PDS uses the same syntax as copying a sequential data set. To copy a spe-
cific member of a PDS, you can substitute the name of a PDS member for either or both of
the data sets in the COPY syntax shown above. For example, the following makes a copy of
the APRIL6 member of the MEMOS.TEXT PDS. The copy is a sequential data set called
FRANK.TEXT:

copy memos.text(april6) frank.text

Similarly, you could add a copy of an existing sequential data set to a partitioned data set as a
new member of that PDS with a command like this:

copy joan.text memos.text(april7)

When copying a member from one PDS to another, it's not enough to enter the name of the
destination PDS. If you enter

32 Chapter 24 Using Files in MVS

copy memos.text(april6) memos1994.text

you'll get the following error message:

DATA SET ORGANIZATIONS ARE NOT COMPATIBLE+

Your source data set here is the functional equivalent of a sequential data set, and your destin-
ation is a partitioned data set—that's why they're incompatible. To indicate that you want
APRIL6 added as a member of the PDS MEMOS1994.TEXT, enter the following:

copy memos.text(april6) memos1994.text(april6)

Of course, you can call this new member of MEMOS1994.TEXT anything you want; it
doesn't have to have the same name as the original.

There a couple of points to keep in mind about copying data sets:

• If you enter the above command and the PDS MEMOS1994.TEXT doesn't exist, TSO
creates it for you before adding APRIL6 as its only member.

• If you specify a partitioned data set as the source of your copy and a nonexistent PDS as
the destination, TSO makes a copy of the whole PDS.

• You will see in section 24.1.7, "Allocating Data Sets," that when data sets are created, one
characteristic specified about them is whether its records (lines) are of fixed or variable
length. You can copy a fixed-length member to a PDS with variable-length records, but
you can't copy from a PDS with variable-length records to a destination with fixed-length
records.

The "Allocating Data Sets" section also describes how creating a new data set means specify-
ing its maximum size in directory blocks. If a PDS gets too big and runs out of directory
blocks, copying it somewhere else is the first step toward fixing the problem. After you make
a copy, you can reallocate it and then copy the temporary copy back onto the original.

24.1.5 Renaming Data Sets

Using the RENAME command is simple. Just indicate the data set (or PDS member) to rename
and its new name. The following renames the data set FRANK.TEXT, giving it the new name
FRANK.AUG23.TEXT:

rename frank.text frank.aug23.text

Renaming a member of a partitioned data set uses similar syntax:

24.1.5 Renaming Data Sets 33

rename memos.text(april6) memos.text(fbapril6)

A renamed member will still be in the same data set, so MVS doesn't allow you to change any
of the qualifiers that make up the member's PDS name.

Renaming a whole PDS and leaving its members' names alone has the same syntax as renam-
ing a sequential data set:

rename memos.text oldmemos.text

You can rename multiple data sets if their names are all the same except for one qualifier in
the same position in each data set. For example, to rename MEMOS.JAN.TEXT,
MEMOS.FEB.TEXT, and MEMOS.MAR.TEXT to the names MEMOS.JAN.TEXTBAK,
MEMOS.FEB.TEXTBAK, and MEMOS.MAR.TEXTBAK enter the following:

rename memos.*.text memos.*.textbak

24.1.6 Deleting Data Sets

To delete a data set, just type the DELETE command followed by the name of the data set
you want to delete:

delete memos.jan.text

After deleting the data set, TSO confirms the deletion:

ENTRY (A) JOEUSER.MEMOS.JAN.TEXT DELETED

To delete a single member of a data set, just specify the member name with its data set:

delete memos.text(apr6)

As with the RENAME command, you can enter an asterisk instead of one of the qualifiers to
delete multiple data sets at once. The following command deletes all data sets with a first
qualifier of MEMOS (after the high-level qualifier of the user's ID), a low-level qualifier of
TEXT, and any second qualifier:

delete memos.*.text

To delete multiple data sets with completely different names, you don't have to enter the DE-
LETE command multiple times; just list the names of each data set between parentheses:

delete (apl.asm test.data memos.text)

34 Chapter 24 Using Files in MVS

TSO responds with messages about the deletion of each data set:

ENTRY (A) JOEUSER.APL.ASM DELETED
ENTRY (A) JOEUSER.TEST.DATA DELETED
ENTRY (A) JOEUSER.MEMOS.TEXT DELETED

24.1.7 Allocating Data Sets

There are two kinds of allocation:

• Allocation of an existing data set usually sets it up for use by a particular program.

• Allocation of a non-existent data set is how you create new data sets.

If you have used other operating systems but are new to MVS, data set allocation is the most
difficult concept to get used to, because it has no direct equivalent in other operating systems.
(VM/CMS, being another IBM mainframe operating system, has a related command called
FILEDEF, but it's not as crucial to survival as ALLOCATE is to MVS users.) With most oper-
ating systems, telling the text editor to edit a non-existent file creates a file by that name; in
MVS, however, you must explicitly create a new data set by allocating it before you can do
anything with it.

Allocation requests access to a data set, whether it already exists or not. There are various
levels of access, and if you try to allocate a data set so that you can modify its contents while
someone else currently has it allocated for modification, MVS won't let you. This is part of
the point: more than one user trying to modify the same data set could result in the loss of one
user's work. This doesn't mean that multiple users can't edit the same data set; they just need
to use software—for example, a database management system—that coordinates their actions
so that no user's work destroys another's.

24.1.7.1 Allocating Existing Data Sets

There are several possible reasons to allocate an existing data set:

• Specifying the data sets that will be needed by an application program you're about to use.

• Telling the system where to find things like your command procedures (CLISTs), error
list partitioned data sets, and startup procedures.

• Redirecting output from a program to a new destination, like the printer, a data set, or
your terminal.

24.1.7 Allocating Data Sets 35

The first of these is the most important for now. An application program often refers to a data
set that it uses by a data definition name, or "ddname." The documentation for that program
tells you the ddnames it expects to find already assigned to the data sets it needs. Before start-
ing the program, you assign these names with the following syntax:

allocate dataset(dataset.name) ddname(ddname) [old/shr/mod]

The order of these three operands does not matter. Also, you can abbreviate the keyword
DATASET to DSNAME or even just DA, and DDNAME can be written as FILE, FI, or just F.
This is why you must be careful about using the terms "data set" and "file" interchangeably:
MVS users sometimes use the term "file" to mean "ddname," which is quite distinct from a
data set name. Like a data set qualifier, a ddname can have no more than eight characters.

The final operand in the syntax above shows the status, or the kind of access to the data set
that you want:

OLD requests exclusive access to the data set. If you or the program
that needs to use the data set will modify its contents, you need
this type of access. This is the default.

SHR requests sharable access to the data set. If you or the program
will only read the data (for example, for running a report), you
don't need to prevent others from using it by requesting OLD or
MOD access.

MOD requests access allowing the appending of data onto the end of
the data set. Unlike OLD, which requests access to edit data cur-
rently existing in the data set, we use MOD to add new data—for
example, to perform data entry with a database.

Again, when you need this command, the chances are slim that you will need to figure out all
the syntax elements yourself. Part of the job of the documentation for MVS application pro-
grams that require specific data set allocations is to explain the details of these allocations.
Just remember to recognize the various alternatives to the keywords DATASET (DSNAME,
DA) and DDNAME (FILE, FI, or F) when it tells you the necessary allocations.

For example, the documentation for the UpRiteBase database system might tell you that it ex-
pects data files to have the ddname "urdata" associated with them, and that you would alloc-
ate the data for your inventory data file with the following command (note that ALLOCATE
only needs its first five letters included):

alloc da(inventry.data) fi(urdata) old

36 Chapter 24 Using Files in MVS

This has exactly the same effect as entering this:

allocate dataset(inventry.data) ddname(urdata) old

Since you may need to allocate more than one data set, and a typo in the ddname could cause
trouble, you'll want the ability to list out the allocations made in your session. See section
24.1.7.4, "Finding Out a Data Set's Allocation Status," for more on this.

24.1.7.2 Allocating New Data Sets

When creating a new data set, the system needs to know much more about it than just its
name—whether it's sequential or partitioned, how much space to set aside for it, the length of
its lines, and several other details that few users completely understand. This brings us back
to the high degree of customization possible with MVS: allocating data sets with the best pos-
sible settings for your site boosts the efficiency of the system. (And there's the converse: do-
ing it badly, on a large scale, can slow down the machine.)

Fortunately, there's a way to tell TSO to allocate a new data set with a particular name and to
copy all of its other attributes from an existing data set: the LIKE operand. For example, to
create a new data set called PROJECT2.COBOL and model its attributes after
PROJECT1.COBOL, enter this:

allocate dataset(project2.cobol) like(project1.cobol)

By using a fully-qualified data set name for the model, you can easily copy the details from
someone else's data set:

allocate dataset(project2.cobol) like('mjones.project1.cobol')

If you want to model your new data set after an existing one in all details except certain ones,
you can specify those extra details after the LIKE operand. For example, if you know that
Mary Jones' PROJECT1.COBOL data set is a partitioned data set with room for 18 members,
but you want to allow more room in yours, include the DIR operand, which specifies how
many directory blocks to set aside for a new PDS:

allocate dataset(project2.cobol) like('mjones.project1.cobol') dir(6)

Since each block holds about six members (although this varies from installation to installa-
tion—ask about the figure at your site), this leaves room for 36 members.

If you don't model a new data set after an existing one, a new data set requires you to at least
specify the following:

24.1.7 Allocating Data Sets 37

• Its name.

• How much space to set aside for it.

• Whether it's a sequential or partitioned data set.

We've already seen that the DATASET operand specifies the name. We also saw earlier that
the LISTDS command produces output in which one of the headings, DSORG, shows a data
set's organization. It will usually be either sequential (PS) or partitioned (PO). Specifying this
with the ALLOCATE command uses the same abbreviations: you add the DSORG() operand
with either PS or PO between the parentheses. (Other values are possible, but most data sets
will be one of these two.) If you do specify PO as the data set organization, don't forget to
also include the DIR operand in order to indicate the maximum number of members that may
be stored in the partitioned data set.

When you specify the space to set aside for your new data set, you must first decide on the
units you will use to indicate this space. You have a choice of TRACKS, CYLINDERS, or
BLOCKS. Most typical data sets are just a handful of blocks or tracks. Only very large data
sets are allocated in terms of cylinders.

To understand tracks and cylinders, picture a mainframe's storage device as a stack of 15 or
so hard disks. A typical individual disk has 2,600 tracks arranged as concentric rings. Each
track holds about 47 kilobytes of data. A cylinder is a collection of tracks represented by the
same track on each disk in the pack; a typical size for a cylinder is 15 times 47K, or 705K.

A block is a unit of storage whose size you specify with the BLKSIZE or BLOCK operand.
The best possible size depends on the particular model of storage device that your system
uses; typical values are 2160, 3600, and 6160. Fortunately, we've already seen the command
to check an existing data set's block size: the LISTDS command. Along with the data set or-
ganization (DSORG), which tells you whether a data set is partitioned or not, LISTDS dis-
plays BLKSIZE as one of the headings describing a data set. Investigating the block size of
existing data sets gives you an idea of how to set this parameter if you choose to allocate your
new data set in units of blocks instead of tracks or cylinders.

Once you decide on the units of storage, you must choose how many of these units to set
aside with the SPACE operand. SPACE takes two arguments: the primary allocation, which
indicates how much space you expect the data set to need, and the secondary allocation, a
backup amount that the system provides if the data set grows beyond the primary amount.
The figure for the secondary amount is usually half of the primary amount.

The following command allocates a sequential data set called MYTEST.TEXT and sets aside
10 tracks of space for it, with 5 tracks as the amount of secondary space to add on if 10 isn't

38 Chapter 24 Using Files in MVS

enough:

allocate dataset(mytest.text) dsorg(ps) tracks space(10 5)

The next command creates a partitioned data set named INVENTRY.COBOL with room for
10 members. Its total space is 10 8000-byte blocks, with 5 blocks set aside as the secondary
storage if necessary. Note that the command won't fit on one line; as section 23.1.3 ("Entering
Commands") explains, we add a plus sign at the end of one line to show that the next typed
line is a continuation of the first one.

allocate dataset(inventry.cobol) block(8000) space(10 5) +
dsorg(po) dir(10)

Another common operand shows the disposition of the data set, or what happens to it when it
is unallocated (see section 24.1.7.3, "Unallocating Data Sets," for information on how this
happens.) There are three possible operands for the data set's disposition:

CATALOG Add the new data set to the master catalog, because you plan to
keep this data set around. This is the default, so you don't need to
add it to your ALLOCATE command if you choose it for your
data set.

DELETE Delete the data set as soon as it is unallocated. Use this for tem-
porary data sets.

KEEP Don't delete it, but don't add it to the catalog. Leave this option
to the experts. Part of the point of the catalog is to make it unne-
cessary for you to know the physical details of the data set's stor-
age; accessing an uncataloged data set requires you to know
more than you want to about your data set.

The following command allocates a sequential data set that MVS deletes as soon as the data
set is unallocated:

allocate dataset(temp.tmp) ddname(tempfile) dsorg(ps) tracks space(10 5) delete

The last two important ALLOCATE operands to be aware of are RECFM, for Record Format,
and LRECL, or Logical Record Length.

A record format of V means that a data set's records have variable length. ("Records" here
means "lines." The terms were once fairly synonymous, but as the science of dealing with
databases advanced, the term "record" took on a much more specific meaning.) In other

24.1.7 Allocating Data Sets 39

words, the lines aren't all the same length. A format of F means that they have fixed length. If
any lines seem shorter than others, the system inserts spaces to make their lengths equal.

When you indicate the record format, you also indicate whether to use blocked records by in-
cluding (or leaving out) a comma and the letter "B." For example, RECFM(F,B) tells MVS
to make them fixed length, blocked records; RECFM(V) means variable-length, unblocked
records. Generally, you'll want blocked records unless you're told specifically otherwise. For
example, if a program's documentation tells you about data sets to create for that program's
use, it tells you how it expects RECFM to be set for these data sets.

If the records have a fixed length, you must set this length—in other words, you must indicate
how long the records are. For variable length records, you must indicate the longest possible
length. Use the LRECL, or Logical Record Length operand, for this. A setting of LRECL(80)
is pretty common.

The following command allocates a data set called HEYJOE.TEXT as a fixed-length,
blocked data set with a record length of 80. Note how the BLOCK operand is an even multiple
of 80 (1760/80 = 22). This way, when the system reads or writes a block of data, it never in-
cludes a partial record, so input and output will be more efficient.

allocate dataset(heyjoe.text) space(10 5) tracks dsorg(ps) +
recfm(f,b) lrecl(80) block(1760)

The ALLOCATE command actually has over fifty possible operands. If you're curious to see
them all, enter HELP ALLOCATE to display further information. I guarantee that you'll be
using that PA1 key ("Aborting Screen Output," section 23.1.3.1) before you've seen them all!

24.1.7.3 Unallocating Data Sets

When you log off, the system automatically unallocates any allocated data sets. You may
want to unallocate one or more data sets before logging off if someone else needs to use one
that you've been using and you're not ready to log off yet. You also may want to unallocate a
data set if you've allocated it with some of the wrong details, like its disposition, and you
want to redo it. MVS won't let you allocate a data set that's already been allocated, so you
must unallocate it first.

The FREE command makes this possible. The only operand it really needs is the name of the
data set to unallocate. For example, to free up the TEMP.TMP data set mentioned above,
enter

free dataset(temp.tmp)

Because the allocation of TEMP.TMP in section 24.1.7.2 included a disposition of DELETE,

40 Chapter 24 Using Files in MVS

unallocating it deletes it.

You also have the option of unallocating it by specifying the ddname used to allocate it. Since
each allocated data set must have a unique ddname, MVS knows which data set you want to
unallocate. Given the allocation of TEMP.TMP shown earlier, the following command has the
same effect as the previous one:

free dataset(tempfile)

Both the DATASET and DDNAME operands of the FREE command can take multiple argu-
ments. For example, if you had allocated the data sets MAYMEMOS.TEXT, JUN-
MEMOS.TEXT, and JULMEMOS.TXT with the ddnames MAY, JUNE, and JULY you could
free all three with either the command

free dataset(maymemos.txt junmemos.txt julmemos.txt)

or with this:

free ddname(may june july)

You can unallocate all the data sets you've allocated with the following command:

free all

Note that this frees up all the data sets that you personally allocated, not all the allocated ones
you may use. The system automatically allocates some, as you'll see in the next section, and it
takes care of unallocating them.

24.1.7.4 Finding Out a Data Set's Allocation Status

Two commands show you a data set's allocation status. You already know one; the LISTDS
command, described in section 24.1.2.2 ("Listing a Partitioned Data Set's Members"), can
take an additional operand that shows a data set's ddname and disposition along with its block
size and data set organization: STATUS. The command

listds dept.data status

produces the following output:

--RECFM-LRECL-BLKSIZE-DSORG--DDNAME---DISP
FB 80 3120 PO SYS00002 KEEP

--VOLUMES--
USERME

24.1.7 Allocating Data Sets 41

It's a partitioned data set, the ddname looks like something the system assigned, and it's a
keeper.

Instead of listing a particular data set's allocation status, you might want to list the names of
all of the allocated data sets. Use the LISTALC command for this. Figure 24.4 shows some
sample output from typing LISTA (you only need the first five letters) with no operands.

DSN220.DSNLOAD
SYS1.DFQLLIB
EDC.V2R1M0.SEDCCOMP
EDC.V2R1M0.SEDCLINK
SYS1.V2R3M0.SIBMLINK
IPO1.CMDPROC
EDC.V2R1M0.SEDCLIST
ISR.V3R2M0.ISRCLIB
UBU0.CLIST
UBU1.CLIST
DSN220.DSNCLIST
SYS1.SBLSCLI0
ISR.V3R2M0.ISRCLIB
ISP.V3R2M0.ISPEXEC
SYS1.SBLSCLI0
DSN220.DSNSPFP
EDC.V2R1M0.SEDCPNLS
ISP.V3R2M0.ISPPENU
ISR.V3R2M0.ISRPENU
ISF.V1R3M1.ISFPLIB
SYS1.SBLSPNL0
SYS1.DFQPLIB
ISP.V3R2M0.ISPMENU

Figure 24.4 Listing allocated data sets with LISTALC (or LISTA).

The asterisks at the bottom show that this is only the first screen of names. You don't have to
allocate over 23 data sets to see output like Figure 24.4; the system automatically allocates
quite a few data sets on its own, and their names are mixed in.

As with the LISTDS command, you can add the STATUS operand to the LISTALC com-
mand to find out the ddname and status of the allocated data sets. Figure 24.5 shows a
sample.

42 Chapter 24 Using Files in MVS

--DDNAME---DISP--
DSN220.DSNLOAD
STEPLIB KEEP

SYS1.DFQLLIB
ISPLLIB KEEP

EDC.V2R1M0.SEDCCOMP
KEEP

EDC.V2R1M0.SEDCLINK
KEEP

SYS1.V2R3M0.SIBMLINK
KEEP

IPO1.CMDPROC
SYSPROC KEEP

EDC.V2R1M0.SEDCLIST
KEEP

ISR.V3R2M0.ISRCLIB
KEEP

UBU0.CLIST
KEEP

UBU1.CLIST
KEEP

DSN220.DSNCLIST
KEEP

SYS1.SBLSCLI0

Figure 24.5 Listing the ddname and status of allocated data sets by adding STATUS to the LISTALC
command.

The first one listed, DSN220.DSNLOAD, has a ddname of STEPLIB and a status of KEEP.
Most others on the list don't have ddnames. Ours is not to question why; it's the system's job
to worry about these things.

24.1.8 Adding a Data Set to a Catalog

There's no specific command for adding a data set to a catalog, but as I mentioned in section
24.1.7.3, "Unallocating Data Sets," the ability to unallocate lets you re-allocate a data set with
different operands. This makes it possible to take an existing data set that doesn't belong to a
catalog and add it to one.

The following series of commands and responses shows an attempt to take a data set called
MEMOS.TXT and add it to the user's catalog. At first, the system won't allow this because it's
already allocated and not part of a catalog. After the data set is freed up, the same allocation

24.1.8 Adding a Data Set to a Catalog 43

command works the second time and adds the data set to the catalog.

allocate dataset(memos.text) tracks space(4 2) catalog
DATA SET JOEUSER.MEMOS.TEXT NOT ALLOCATED, REQUESTED AS NEW BUT CURRENTLY ALLOCATED
READY
free dataset(memos.text)
READY
allocate dataset(memos.text) tracks space(4 2) catalog
READY

The lack of an error message after the second attempt shows that it worked.

44 Chapter 24 Using Files in MVS

Chapter 25 The MVS ISPF Text Editor
25.1 The ISPF Text Editor
Editing data sets is one of the few places in MVS where ISPF gives you far more power and
flexibility than TSO. Given the choice between the ISPF text editor and the TSO EDIT text
editor, virtually everyone chooses the former. If the lack of a proper system connection limits
you to using TSO without access to ISPF, see section 25.8, "TSO's EDIT Text Editor," for the
basics of editing data sets with the more primitive editor. (In fairness, I should mention one
advantage of EDIT over the ISPF editor: you can get in and out of it much faster. The lack of
menus and panels to fill out make it more efficient for quickly creating small data sets or per-
forming simple edits to short data sets.)

25.2 Entering the ISPF Editor
To get into the ISPF editor, you must first enter ISPF by typing

ispf

at the TSO command prompt. This displays the ISPF main (or "primary") menu screen shown
in Figure 25.1. (An MVS system administrator can customize the ISPF menu screens, so your
main menu may not look exactly the same.)

----------------------- ISPF/PDF PRIMARY OPTION MENU ------------------------
OPTION ===> _

USERID -JOEUSER
0 ISPF PARMS - Specify terminal and user parameters TIME - 09:24
1 BROWSE - Display source data or output listings TERMINAL - 3278
2 EDIT - Create or change source data PF KEYS - 24
3 UTILITIES - Perform utility functions
4 FOREGROUND - Invoke language processors in foreground
5 BATCH - Submit job for language processing
6 COMMAND - Enter TSO Command, CLIST, or REXX exec
7 DIALOG TEST - Perform dialog testing
8 LM UTILITIES- Perform library administrator utility functions
9 IBM PRODUCTS- Additional IBM program development products

10 SCLM - Software Configuration and Library Manager
D DB2 - DB2 Facilities
H HSM - DFHSM Facilities
C CHANGES - Display summary of changes for this release
S SDSF - System Display and Search Facility

SO DFSORT - DFSORT Facility

45

T TUTORIAL - Display information about ISPF/PDF
X EXIT - Terminate ISPF using log and list defaults

F1=HELP F2=SPLIT F3=END F4=RETURN F5=RFIND F6=RCHANGE
F7=UP F8=DOWN F9=SWAP F10=LEFT F11=RIGHT F12=RETRIEVE

Figure 25.1 The ISPF primary menu.

Your cursor appears next to the OPTION ===> prompt, waiting for you to enter the number
of one of the menu choices. On the menu shown in Figure 25.1, entering 2 brings you to the
entry panel shown in Figure 25.2, where you enter the name of the data set that you will edit.
(Here's a nice shortcut: if you enter ISPF 2 at the TSO prompt, you jump right to this
screen.)

--------------------------- EDIT - ENTRY PANEL ------------------------------
COMMAND ===>

ISPF LIBRARY:
PROJECT ===>
GROUP ===> ===> ===> ===>
TYPE ===>
MEMBER ===> (Blank or pattern for member selection list)

OTHER PARTITIONED OR SEQUENTIAL DATA SET:
DATA SET NAME ===>
VOLUME SERIAL ===> (If not cataloged)

DATA SET PASSWORD ===> (If password protected)

PROFILE NAME ===> (Blank defaults to data set type)

INITIAL MACRO ===> LMF LOCK ===> YES (YES, NO or NEVER)

FORMAT NAME ===> MIXED MODE ===> NO (YES or NO)

F1=HELP F2=SPLIT F3=END F4=RETURN F5=RFIND F6=RCHANGE
F7=UP F8=DOWN F9=SWAP F10=LEFT F11=RIGHT F12=RETRIEVE

Figure 25.2 Entry panel for naming the data set to edit.

46 Chapter 25 The MVS ISPF Text Editor

Each arrow (===>) points at a field of the entry panel to fill out. To move your cursor for-
ward from field to field, press your Tab key. To move your cursor in the other direction, press
Backtab. (On most PC keyboards, this means pressing the Shift key and the Tab key together;
on a mainframe keyboard, Backtab has its own key.)

The only really crucial fields on this entry panel are the ones that you use to enter the name of
the data set that you want to edit. (The other fields on the Edit entry panel are used for more
advanced features like password protection and stored collections of settings known as edit
profiles. If you don't know what to do with any of these other fields, leave them alone. Blank
is a good default in ISPF.) As explained in section 23.2.3, "Naming Data Sets," fully qualified
data set names often have a total of three qualifiers, and ISPF refers to the three as the data
set's project, group, and type. Figure 25.3 shows how Joe User fills out the ISPF LIBRARY
section of the entry panel to edit the data set INVENTRY.COBOL.

ISPF LIBRARY:
PROJECT ===> JOEUSER
GROUP ===> INVENTRY ===> ===> ===>
TYPE ===> COBOL
MEMBER ===> (Blank or pattern for member selection list)

OTHER PARTITIONED OR SEQUENTIAL DATA SET:
DATA SET NAME ===>
VOLUME SERIAL ===> (If not cataloged)

Figure 25.3 Sample entries in the ISPF LIBRARY section of the EDIT entry panel to edit INVENTRY.COBOL.

To edit a member of a partitioned data set, enter the three parts of the PDS name in the
PROJECT, GROUP, and TYPE fields, and then the member name in the MEMBER field.

If your full data set name does not have three qualifiers, enter its name at the DATA SET
NAME field under the line "OTHER PARTITIONED OR SEQUENTIAL DATA SET." You
don't need the high-level qualifier; ISPF assumes that it's your user ID. If you don't want it to
automatically add this, do the same thing that you do when entering the data set name as part
of a command on the TSO command line: enclose it in apostrophes. (You really only need the
first one.)

Figure 25.4 shows how Joe fills out the DATA SET NAME field to enter the same data set
name in the panel.

25.2 Entering the ISPF Editor 47

ISPF LIBRARY:
PROJECT ===>
GROUP ===> ===> ===> ===>
TYPE ===>
MEMBER ===> (Blank or pattern for member selection list)

OTHER PARTITIONED OR SEQUENTIAL DATA SET:
DATA SET NAME ===> INVENTRY.COBOL
VOLUME SERIAL ===> (If not cataloged)

Figure 25.4 Sample entries in the DATA SET NAME section of the EDIT entry panel to edit
INVENTRY.COBOL.

You don't always have to fill out the data set name; once you've entered a data set's qualifiers
in the PROJECT, GROUP, and TYPE fields, the ISPF editor redisplays the qualifier names
you typed there the next time you use this entry panel. To edit that data set again, just call up
that panel and press the Enter key. To edit a data set with a similar name, you only need to
change the appropriate fields. (However, if you entered the name at the DATA SET NAME
field, ISPF will not remember what you typed there.)

One way or another, some existing data set's name must be entered. With many text editors
included with other operating systems, telling the editor to edit a data set that doesn't exist
causes it to create a file with that name. The ISPF editor, however, expects the data set to
already exist, even if it's empty. If you want to create a new data set, you must allocate it first
with the ALLOCATE command. (For more on this, see section 24.1.7.2, "Allocating New
Data Sets.")

Once you tell ISPF the data set that you want to edit press Enter. ISPF displays the editing
screen, as shown in Figure 25.5.

EDIT ---- JOEUSER.INVENTRY.COBOL ----------------------------- COLUMNS 001 072
COMMAND ===> SCROLL ===> PAGE
****** ***************************** TOP OF DATA ******************************
==MSG> -WARNING- THE UNDO COMMAND IS NOT AVAILABLE UNTIL YOU CHANGE
==MSG> YOUR EDIT PROFILE USING THE COMMAND "RECOVERY ON".
''''''
''''''
''''''
''''''

48 Chapter 25 The MVS ISPF Text Editor

''''''
''''''
''''''
''''''
''''''
''''''
''''''
''''''
''''''
''''''
''''''
''''''
****** **************************** BOTTOM OF DATA ****************************
F1=HELP F2=SPLIT F3=END F4=RETURN F5=RFIND F6=RCHANGE
F7=UP F8=DOWN F9=SWAP F10=LEFT F11=RIGHT F12=RETRIEVE

Figure 25.5 ISPF editor screen for an empty new data set.

Besides showing that you're using the ISPF EDIT program, the top line of the screen shows
the name of the data set being edited and which columns of this data set are being displayed.
The second line has the prompt where you enter editing commands and, to the right of where
it says SCROLL ===>, a message telling you how far you will scroll when you press the
PF7 or PF8 keys to move up or down in your data set.

The left side of the screen shows the numbers automatically added to the lines of your data
set. Where no lines of data exist, the editor shows six apostrophes ('''''') instead.

The main blank space on the screen is where you enter your text. When editing an existing
data set, this is where it appears. As Figure 25.5 shows, other kinds of information can also
appear there. The column on the left identifies the type of this information. For example,
==MSG> means that the line shows a message from the editor to you. The message shown in
the example tells the user that the UNDO command is unavailable until a certain change is
made to the edit profile. (For more on edit profiles, see the following section.)

25.2.1 Customizing Your Editor's Environment

There are several commands that you can type at the editor's command line to customize the
editor's behavior. (If your cursor is not already at the command line, press the Home key to
move it up there.)

Because some programming languages expect everything to be in upper case, the ISPF editor
sometimes translates everything you type to upper case. This is annoying when you type a

25.2.1 Customizing Your Editor's En-
vironment 49

paragraph, press Enter, and the whole paragraph gets converted. If you want the editor to re-
spect a mix of upper and lower case letters, enter

caps off

at the command line. When writing a program in a language like FORTRAN, which requires
upper case letters, entering the command

caps on

will translate every new line of text to all upper case letters each time you press Enter.

Another setting that can cause confusing behavior is NULLS. You set it on by typing

nulls on

at the editor's command line and set it off by typing OFF instead of ON in the same command.

When set to OFF, the editor automatically puts blanks everywhere on a line where you didn't
type anything else (between each word and throughout the remainder of the line after the last
word) as if you had moved to each of these places and pressed the space bar to insert the
blank character. This fills up each line, and causes problems when you want to insert new
characters on a line. As with any text editor, inserted characters move existing characters on
the right of the cursor further to the right; if the blank character fills all the space that looks
empty, then the editor has nowhere to move the existing characters when you insert new char-
acters. Trying to do so locks the keyboard, and you must press the Reset key to continue. (For
more detailed information on inserting new characters, see section 25.4, "Inserting, Deleting,
and Typing over Words and Characters.")

If setting NULLS to ON avoids this problem, there must be a disadvantage to setting it ON.
Otherwise, the editor wouldn't offer you two different settings, right? Many books describing
the ISPF editor describe the following "problem": sometimes you want a space inserted where
you didn't actually press the space bar, and with NULLS set to ON, pressing Enter resets the
typed line, squeezing out all the places where nothing was typed. If you type "how are you"
on a line and use your cursor-right key instead of the space bar for the spaces between the
words, pressing Enter turns the phrase into "howareyou."

When editing a simple text data set, it makes more sense to set NULLS to ON. Setting it to
OFF only provides an advantage when the ISPF editor is used to fill out a data entry form, in
which the screen displays named fields of fixed lengths. In this case, use the Erase EOF
(erase to end of field) key to clear any characters in the field from the cursor's position to the
end of the field.

50 Chapter 25 The MVS ISPF Text Editor

To sum up: if you have problems inserting, set NULLS to ON so the editor will not automat-
ically fill in the remainder of a line after the last word with blanks.

Once you've set various parameters to customize your editing environment, many editors
provide a way to save these settings for future use in a collection called an edit profile. The
ISPF editor does this for you automatically, and it goes a step further than many other editors:
it saves different collections of settings based on the TYPE of the data set. This way, if you
set CAPS to ON when writing a program in FORTRAN (for example, a data set called
MAINMENU.FORT), then CAPS will always be ON for any data set you edit with a type of
FORT, whether it's called RPTMENU.FORT, SUMRPT.FORT, or MAINMENU.FORT. If you
set CAPS to OFF when editing a data set called MAY6MEMO.TEXT, it remains set to OFF
every time you edit a data set with that type. If you alternately edit TEXT and FORT data
sets, you won't have to reset CAPS every time, because the editor remembers how you set
CAPS and all the other settings for each data set type.

25.3 Line Commands
In addition to the kind of commands that you enter at the command line at the top of your
screen (described in section 25.2.1, "Customizing Your Editor's Environment,") the ISPF ed-
itor has another category of commands called "line commands." (These will be familiar to
users of the AS/400's SEU editor. Also, CMS users who find that the screen resembles the
XEDIT text editor's screen will find that line commands are the ISPF editor's counterpart to
XEDIT prefix commands.) You can add, delete, copy, and move lines by entering one- or
two-character commands in the line command area and pressing the Enter key. You can enter
line command commands in the column to the left of the TOP OF DATA and BOTTOM OF
DATA lines as well; if you couldn't, it would be pretty tough to add your first line.

You can enter a line command command anywhere on the line command area. For example,
if you enter d2, the command to delete two lines, on the line command area like this

d2000

or like this

000d2

it still works the same. If you enter a command with a number in it, make sure that your curs-
or is right after the number when you press Enter, because the system treats every character
up to the character preceding the cursor as part of the number you meant to type. For ex-
ample, when you enter your 2d on the line command area for line number 11400 like this

d2400

25.3 Line Commands 51

and press Enter with your cursor at the 4, the editor deletes two lines. If your cursor was on
the second zero when you pressed Enter, the system would think that you wanted to delete
240 lines!

25.3.1 Adding New Lines

Use the line command i (for "insert") to add new lines on which to type. Figure 25.6 shows
an example.

COMMAND ===> SCROLL ===> PAGE
i** ************************** TOP OF DATA ******************************
****** **************************** BOTTOM OF DATA ****************************

Figure 25.6 Adding the i line command to insert a new blank line.

When you press Enter, the editor adds a new blank line after the line where you entered the
command and positions your cursor at the beginning of the new line, waiting for you to type
in text, as shown in Figure 25.7.

COMMAND ===> SCROLL ===> PAGE
****** ***************************** TOP OF DATA ******************************
'''''' _
****** **************************** BOTTOM OF DATA ****************************

Figure 25.7 The effect of the i command entered in Figure 25.6.

The new line isn't really a part of your data set until you add something there. After you type
some text and press Enter, the editor assigns a number to the line, creates a new blank line un-
der it, and positions your cursor at the beginning of the new one. Figure 25.8 shows an ex-
ample.

COMMAND ===> SCROLL ===> PAGE
****** ***************************** TOP OF DATA ******************************

52 Chapter 25 The MVS ISPF Text Editor

000100 The shadowy daughter of Urthona stood before red Orc
'''''' _
****** **************************** BOTTOM OF DATA ****************************

Figure 25.8 New line added by ISPF after you enter text and press Enter.

If the editor converts your entered text to all upper case, but you didn't want it to, you'll need
the CAPS OFF command to change this. See section 25.2.1, "Customizing Your Editor's En-
vironment," for more information.

Adding a number after the i command tells the editor to add that many lines. In Figure 25.9,
3 lines are about to be added; Figure 25.10 shows the effect of this command.

COMMAND ===> SCROLL ===> PAGE
****** ***************************** TOP OF DATA ******************************
0001i3 The shadowy daughter of Urthona stood before red Orc
****** **************************** BOTTOM OF DATA ****************************

Figure 25.9 Adding 3 lines with the i command.

COMMAND ===> SCROLL ===> PAGE
****** ***************************** TOP OF DATA ******************************
000100 The shadowy daughter of Urthona stood before red Orc
'''''' _
''''''
''''''
****** **************************** BOTTOM OF DATA ****************************

Figure 25.10 The effect of the i line command entered shown in Figure 25.9.

If any of these new lines have no text when you press Enter, the editor removes them and
only assigns numbers to the new lines with text. Figure 25.11 shows three new blank lines
with text entered at only one of them, and Figure 25.12 shows how this looks after pressing

25.3.1 Adding New Lines 53

Enter.

COMMAND ===> SCROLL ===> PAGE
****** ***************************** TOP OF DATA ******************************
000100 The shadowy daughter of Urthona stood before red Orc
''''''
'''''' When fourteen suns had faintly journey'd o'er his dark abode;
''''''
****** **************************** BOTTOM OF DATA ****************************

Figure 25.11 Three new lines, but with text entered at only one of them.

COMMAND ===> SCROLL ===> PAGE
****** ***************************** TOP OF DATA ******************************
000100 The shadowy daughter of Urthona stood before red Orc
000200 When fourteen suns had faintly journey'd o'er his dark abode;
****** **************************** BOTTOM OF DATA ****************************

Figure 25.12 The effect of pressing Enter when viewing Figure 25.11.

If you do want a blank line to remain in your data set, use your space bar to type at least one
space there.

25.3.2 Moving Your Cursor Around

Your up, down, left, and right cursor keys move the cursor in the direction in which they
point.

The Tab key moves your cursor around more quickly. To move your cursor to the beginning
of the previous line, use the Backtab key (with a PC that is emulating a mainframe terminal,
press the Shift key and the Tab key simultaneously). If your cursor is on a line of text, Tab
and Backtab jump your cursor to the line command area; if your cursor is on the line com-
mand area, pressing either key jumps your cursor to the beginning of the appropriate line.

Some mainframe terminals have a Return key that is separate from the Enter key. It might
have an arrow pointing down and then left, or it might say "New Line" on it. When using the
editor, pressing this key jumps your cursor to the beginning of the next line.

54 Chapter 25 The MVS ISPF Text Editor

Use the commands UP, DOWN, LEFT, and RIGHT at the command line to scroll the text
in one of those four directions. For example,

down 10

scrolls the text down ten lines, and

right 20

scrolls to the right 20 positions.

25.4 Inserting, Deleting, and Typing over Words and
Characters
To delete an individual character, move your cursor there and press your Delete key. On a
3270 terminal, the delete key has a lower case "a" with a proofreader's symbol for deletion: a
line through it that forms a loop. When emulating a 3270 terminal, your emulation software
probably has your PC's Delete key doing this job.

To type over existing text, just move your cursor where you want the new text and type.

To insert text, move your cursor to the place where you want to insert it and press the Insert
key. On a 3270 terminal, this key has the letter "a" with a carat symbol (^) over it. When you
press it, a carat symbol should appear at the bottom of your screen to indicate that you are in
insert mode. (When emulating a 3270, your cursor may change shape.) Text that you type in
moves any text currently on the right of the cursor further to the right.

If the last character gets moved too far to the right, the ISPF editor beeps at you to indicate
that you can't insert more characters on that line. When you first allocate a data set, the LRE-
CL operand (described in section 24.1.7.2, "Allocating New Data Sets") sets its width and the
maximum length of any lines.

To return to overstrike mode while using a 3270 terminal, press the key marked "Reset." The
carat symbol disappears, and newly typed text will then take the place of the characters at the
cursor. (When your keyboard "locks up," or refuses to accept input, the Reset key is also use-
ful for freeing up the keyboard.) On most PCs emulating a 3270, the Insert key does the job
of the 3270 keyboard's Insert key and the Escape key serves as the Reset key. Check you
emulation program's documentation to make sure.

25.4.1 Duplicating Lines

When duplicating lines, think of it as "repeating" lines. This will make it will be easier to re-

25.4 Inserting, Deleting, and Typing
over Words and Characters 55

member the line command: r. Enter r by itself in the line command area and press Enter to
make a single copy of a line. For example, if you enter r on the third line in the text shown in
Figure 25.13, and then press Enter, you get the result shown in Figure 25.14.

COMMAND ===> SCROLL ===> PAGE
****** ***************************** TOP OF DATA ******************************
000100 The shadowy daughter of Urthona stood before red Orc
000200 When fourteen suns had faintly journey'd o'er his dark abode;
0r0300 His food she brought in iron baskets, his drink in cups of iron
000400 Crown'd with a helmet & dark hair the nameless female stood.
000500 A quiver with its burning stores, a bow like that of night
****** **************************** BOTTOM OF DATA ****************************

Figure 25.13 Entering the r line command to repeat a line.

COMMAND ===> SCROLL ===> PAGE
****** ***************************** TOP OF DATA ******************************
000100 The shadowy daughter of Urthona stood before red Orc
000200 When fourteen suns had faintly journey'd o'er his dark abode;
000300 His food she brought in iron baskets, his drink in cups of iron
000400 His food she brought in iron baskets, his drink in cups of iron
000500 Crown'd with a helmet & dark hair the nameless female stood.
000600 A quiver with its burning stores, a bow like that of night
****** **************************** BOTTOM OF DATA ****************************

Figure 25.14 The effect of pressing Enter after entering the r line command shown in Figure 25.13.

Notice how the editor renumbered the line (or if applicable, lines) after the new one.

Following the r command with a number tells the editor to add that many repetitions of the
line with the command. Pressing Enter after entering the command shown on line 200 in Fig-
ure 25.15 repeats that line four times, as shown in Figure 25.16.

COMMAND ===> SCROLL ===> PAGE
****** ***************************** TOP OF DATA ******************************

56 Chapter 25 The MVS ISPF Text Editor

000100 The shadowy daughter of Urthona stood before red Orc
r40200 When fourteen suns had faintly journey'd o'er his dark abode;
000300 His food she brought in iron baskets, his drink in cups of iron
000400 Crown'd with a helmet & dark hair the nameless female stood.
000500 A quiver with its burning stores, a bow like that of night
****** **************************** BOTTOM OF DATA ****************************

Figure 25.15 Entering the r line command with a 4 to repeat the line 4 times.

COMMAND ===> SCROLL ===> PAGE
****** ***************************** TOP OF DATA ******************************
000100 The shadowy daughter of Urthona stood before red Orc
000200 When fourteen suns had faintly journey'd o'er his dark abode;
000300 When fourteen suns had faintly journey'd o'er his dark abode;
000400 When fourteen suns had faintly journey'd o'er his dark abode;
000500 When fourteen suns had faintly journey'd o'er his dark abode;
000600 When fourteen suns had faintly journey'd o'er his dark abode;
000700 His food she brought in iron baskets, his drink in cups of iron
000800 Crown'd with a helmet & dark hair the nameless female stood.
000900 A quiver with its burning stores, a bow like that of night
****** **************************** BOTTOM OF DATA ****************************

Figure 25.16 The effect of pressing Enter after entering the r4 line command shown in Figure 25.15.

25.4.2 Deleting Lines

Delete lines with the d line command. Entering d by itself in the line command area and then
pressing Enter deletes the line where you entered the command; adding a number after the d
command deletes a total of that many lines, beginning with the line where you entered the
command.

You can also delete multiple lines by indicating the beginning and end of a block to delete.
Enter dd at the first and last line of the block to delete and the editor will delete all of those
lines, including the ones where you entered the dd commands, when you press Enter. For ex-
ample, after entering dd at lines 200 and 700 in Figure 25.17, pressing Enter deletes those
lines and the lines between them, as shown in Figure 25.18.

25.4.2 Deleting Lines 57

COMMAND ===> SCROLL ===> PAGE
****** ***************************** TOP OF DATA ******************************
000100 The shadowy daughter of Urthona stood before red Orc
dd0200 When fourteen suns had faintly journey'd o'er his dark abode;
000300 When fourteen suns had faintly journey'd o'er his dark abode;
000400 When fourteen suns had faintly journey'd o'er his dark abode;
000500 When fourteen suns had faintly journey'd o'er his dark abode;
000600 When fourteen suns had faintly journey'd o'er his dark abode;
0dd700 His food she brought in iron baskets, his drink in cups of iron
000800 Crown'd with a helmet & dark hair the nameless female stood.
000900 A quiver with its burning stores, a bow like that of night
****** **************************** BOTTOM OF DATA ****************************

Figure 25.17 Entering the dd line commands to delete 6 lines.

COMMAND ===> SCROLL ===> PAGE
****** ***************************** TOP OF DATA ******************************
000100 The shadowy daughter of Urthona stood before red Orc
000200 Crown'd with a helmet & dark hair the nameless female stood.
000300 A quiver with its burning stores, a bow like that of night
****** **************************** BOTTOM OF DATA ****************************

Figure 25.18 The effect of pressing Enter after entering the dd line commands shown in Figure 25.17.

You will find this particularly handy when you want to delete a block that doesn't begin and
end on the same screen, because the alternative (counting the number of lines so that you can
put a number after a single d) is a lot of trouble.

25.4.3 Copying Lines

Copying is similar to deletion except that you use the letter c to indicate the line or lines to
copy and you must indicate a destination for the copied text. The ISPF editor gives you three
options for indicating the text to copy:

• Enter a single c in a line's command area if you only need to copy that one line.

• Enter a single c followed by a number to indicate how many lines to copy.

58 Chapter 25 The MVS ISPF Text Editor

• Enter cc at the first and last lines of the block to copy.

In addition to indicating the line or lines to copy, you must indicate where to copy them. Two
line commands make this possible:

b When Enter is pressed, copy the block to the line before this one.

a When Enter is pressed, copy the block to the line after this one.

In Figure 25.19, Joe User is about to copy the second, third, and fourth lines above the first
line, to the beginning of the data set. Figure 25.20 shows the effect of pressing Enter after he
enters these commands.

COMMAND ===> SCROLL ===> PAGE
****** ***************************** TOP OF DATA ******************************
0b0100 The shadowy daughter of Urthona stood before red Orc
cc0200 When fourteen suns had faintly journey'd o'er his dark abode;
000300 His food she brought in iron baskets, his drink in cups of iron
0cc400 Crown'd with a helmet & dark hair the nameless female stood.
000500 A quiver with its burning stores, a bow like that of night
****** **************************** BOTTOM OF DATA ****************************

Figure 25.19 Entering the cc line commands to copy 3 lines above the first line.

COMMAND ===> SCROLL ===> PAGE
****** ***************************** TOP OF DATA ******************************
000100 When fourteen suns had faintly journey'd o'er his dark abode;
000200 His food she brought in iron baskets, his drink in cups of iron
000300 Crown'd with a helmet & dark hair the nameless female stood.
000400 The shadowy daughter of Urthona stood before red Orc
000500 When fourteen suns had faintly journey'd o'er his dark abode;
000600 His food she brought in iron baskets, his drink in cups of iron
000700 Crown'd with a helmet & dark hair the nameless female stood.
000800 A quiver with its burning stores, a bow like that of night
****** **************************** BOTTOM OF DATA ****************************

Figure 25.20 The effect of pressing Enter after entering the cc line commands shown in Figure 25.19.

25.4.4 Moving Lines 59

25.4.4 Moving Lines

Moving is similar to copying, except that after pressing Enter, the original lines are no longer
there—they're at their new location. As with copying, there are three ways to specify the
block to move, but these use the letter m:

• Enter a single m in a line's command area if you only need to move that one line.

• Enter a single m followed by a number to indicate how many lines to move.

• Enter mm at the first and last lines of the block to move.

To specify the destination of the block to move, use the letters b or a the same way you do to
specify the destination of a block to copy.

25.5 Searching for Text
If you think of searching for text in the ISPF editor as "finding" it, you'll remember the com-
mand: the letter "F" entered at the command line. Figure 25.21 shows this command entered
to find the word "his," and Figure 25.22 shows the result.

EDIT ---- JOEUSER.BLAKE.TEXT --------------------------------- COLUMNS 001 072
COMMAND ===> f his SCROLL ===> PAGE
****** ***************************** TOP OF DATA ******************************
000001 The shadowy daughter of Urthona stood before red Orc
000002 When fourteen suns had faintly journey'd o'er his dark abode;
000003 His food she brought in iron baskets, his drink in cups of iron;
000004 Crown'd with a helmet & dark hair the nameless female stood.
000005 A quiver with its burning stores, a bow like that of night
****** **************************** BOTTOM OF DATA ****************************

Figure 25.21 Using the find command to look for the word "his."

The cursor jumps to the first occurrence, and a message in the upper-right of the screen shows
the characters that it found.

If your search target has a blank in it, (for example, if you want to search for the string "his
drink") enclose the string in apostrophes, like this:

f 'his drink'

60 Chapter 25 The MVS ISPF Text Editor

Note at the bottom of the screen in Figure 25.22 how the F5 key means RFIND, or "repeat
find." Press it, and the cursor jumps to the next occurrence of the string "his." Figure 25.23
shows the effect of pressing F5 when viewing the screen shown in Figure 25.22.

EDIT ---- JOEUSER.BLAKE.TEXT ------------------------------- CHARS 'his' FOUND
COMMAND ===> SCROLL ===> PAGE
****** ***************************** TOP OF DATA ******************************
000001 The shadowy daughter of Urthona stood before red Orc
000002 When fourteen suns had faintly journey'd o'er his dark abode;
000003 His food she brought in iron baskets, his drink in cups of iron;
000004 Crown'd with a helmet & dark hair the nameless female stood.
000005 A quiver with its burning stores, a bow like that of night
****** **************************** BOTTOM OF DATA ****************************

F1=HELP F2=SPLIT F3=END F4=RETURN F5=RFIND F6=RCHANGE
F7=UP F8=DOWN F9=SWAP F10=LEFT F11=RIGHT F12=RETRIEVE

Figure 25.22 The effect of pressing Enter after entering the find command shown in Figure 25.21.

EDIT ---- JOEUSER.BLAKE.TEXT ------------------------------ CHARS 'His' FOUND
COMMAND ===> SCROLL ===> PAGE
****** ***************************** TOP OF DATA ******************************
000001 The shadowy daughter of Urthona stood before red Orc
000002 When fourteen suns had faintly journey'd o'er his dark abode;
000003 His food she brought in iron baskets, his drink in cups of iron;
000004 Crown'd with a helmet & dark hair the nameless female stood.
000005 A quiver with its burning stores, a bow like that of night
****** **************************** BOTTOM OF DATA ****************************

25.5 Searching for Text 61

Figure 25.23 Finding "his" a second time by pressing the F5 key.

What happens if the search target isn't found? Figure 25.24 shows what happens after press-
ing F5 a third time, when there are no more occurrences. As the message in the upper-right of
Figure 25.24 shows, it searched from the cursor location to the bottom of the data, and didn't
find the string.

EDIT ---- JOEUSER.BLAKE.TEXT ------------------------ *BOTTOM OF DATA REACHED*
COMMAND ===> SCROLL ===> PAGE
****** ***************************** TOP OF DATA ******************************
000001 The shadowy daughter of Urthona stood before red Orc
000002 When fourteen suns had faintly journey'd o'er his dark abode;
000003 His food she brought in iron baskets, his drink in cups of iron;
000004 Crown'd with a helmet & dark hair the nameless female stood.
000005 A quiver with its burning stores, a bow like that of night
****** **************************** BOTTOM OF DATA ****************************

Figure 25.24 The result of an unsuccessful search for a string.

Searching is not case-sensitive; although we were searching for "his," it also found "His." To
do an exact-case search, put the letter "C" just before your search target. (Whether the target
has a blank in it or not, you need to enclose it in apostrophes to separate it from the "C.") The
following shows an example:

f c'his'

The f command always searches from the cursor location, unless you tell it otherwise with
the word "first." Typing the following

f first his

tells the system, "search for the word 'his' starting at the first line of the data set."

Combining these features is no problem; entering

f first c'his'

tells the editor to do an exact-case search for the string "his" starting at the beginning of the
data set.

62 Chapter 25 The MVS ISPF Text Editor

25.6 Saving Your Changes
To save your edits, enter SAVE at the command line and press Enter. You can then continue
editing. To abort any edits made since the last time you saved your work, enter CANCEL at
the command line. The editor returns you to the Edit Entry Panel where you first entered the
name of the data set to edit.

The next section shows a shortcut for saving your work and quitting all at once.

25.7 Quitting the ISPF Editor
As the bottom of the screen shows, F3 is the END key. Pressing this saves your work and re-
turns you to the Edit Entry Panel, where you can enter the name of another data set to edit or
quit back to the main ISPF menu.

If you are done editing your data set and know that you don't want to edit any other data sets,
press F4, the RETURN key (not to be confused with the Return key on the right side of your
keyboard). This saves your data set, quits out of the editor, and skips the Edit Entry Panel, re-
turning you directly to the ISPF main menu. To exit this menu and return to the TSO prompt,
select the EXIT menu choice.

25.7.1 On-line Help in the Editor

While using the editor, you can access on-line help in two ways:

• Typing HELP at the command line.

• Pressing F1.

Either way, the system displays the main help menu for the editor, as shown in Figure 25.25.

TUTORIAL -------------------------- EDIT ----------------------------- TUTORIAL
OPTION ===>

EDIT

Edit allows you to create or change source data.

The following topics are presented in sequence, or may be selected by number:
0 - General introduction 8 - Display modes (CAPS/HEX/NULLS)

25.7 Quitting the ISPF Editor 63

1 - Types of data sets 9 - Tabbing (hardware/software/logical)
2 - Edit entry panel 10 - Automatic recovery
3 - SCLM edit entry panel 11 - Edit profiles
4 - Member selection list 12 - Edit line commands
5 - Display screen format 13 - Edit primary commands
6 - Scrolling data 14 - Labels and line ranges
7 - Sequence numbering 15 - Ending an edit session

The following topics will be presented only if selected by number:
16 - Interaction between LMF and SCLM
17 - Edit models
F1=HELP F2=SPLIT F3=END F4=RETURN F5=RFIND F6=RCHANGE
F7=UP F8=DOWN F9=SWAP F10=LEFT F11=RIGHT F12=RETRIEVE

Figure 25.25 Main help menu for ISPF editor.

As with any other help screen, pressing F1 again gives you help about the available help—in
other words, it tells you how to use the help system. Using it is pretty simple: at the OPTION
===> prompt, enter the number of the menu choice about which you want to learn more.
Help about a complicated topic may lead to another menu that lets you choose a subtopic.
When you are done, press F3 or F4 to return to the editing screen.

25.8 TSO's EDIT Text Editor
If you can't use the ISPF editor, you can still use the TSO EDIT text editor. Some PC users
who used DOS before release 5.0 endured a similar situation: when they needed a text editor
but lacked a decent one, they had to use the dreaded EDLIN, which came with the operating
system.

As a matter of fact, anyone with experience with EDLIN will find the TSO EDIT editor very
familiar. It has a command mode and an input mode, and everything you enter and everything
that the system displays scrolls up the screen a line a time.

25.8.1 Starting the Editor

In its simplest form, you can tell the editor that you want to edit a particular data set by enter-
ing EDIT followed by the data set name. However, as you will see in section 25.8.16, "On-
line Help and the TSO Editor," typing HELP EDIT at the TSO prompt reveals quite a few
possible operands that you can add. Many of these tell the editor what kind of data set you are
editing—for example, whether it's a text data set or source code for a FORTRAN or COBOL
program—if the editor can't figure it out from the data set name.

64 Chapter 25 The MVS ISPF Text Editor

For example, if you enter

edit blake.text

it knows that you are editing a data set consisting of simple text. If, on the other hand, you
enter

edit jan3bc.memo

then TSO asks you to

ENTER DATA SET TYPE-

and you enter "text" in response to this. If the data set type is not obvious from the low-level
qualifier, you can add it as an operand, like this,

edit jan3bc.memo text

and the editor doesn't prompt you to enter the type of the data set.

25.8.2 Creating a New Data Set

The TSO editor does have one significant advantage over the ISPF editor: if you tell it to edit
a nonexistent data set, it allocates and creates the data set for you instead of just telling you
that it doesn't exist. For example, if you enter

edit test.text

the TSO editor responds with

DATA SET OR MEMBER NOT FOUND, ASSUMED TO BE NEW

Because the details of the allocation vary from installation to installation, try creating a data
set this way and then using the LISTDS command to learn the allocation parameters used.
(Section 24.1.7.4, "Finding Out a Data Set's Allocation Status," explains more about the
LISTDS command.)

After creating a new data set, the editor displays the line number for the data set's first line
and puts you in input mode. The following section explains more about using input mode.

25.8.3 Line Numbering and the EDIT Editor

Data sets may be numbered or unnumbered, which affects how you use the EDIT editor. Like

25.8.2 Creating a New Data Set 65

the programs that enable you to write programs in BASIC on older computers, you can use
these numbers to indicate which lines should be affected by each command. Also, when edit-
ing a numbered data set, you can tell more easily when you are in input mode, because EDIT
displays the number of the line being added.

25.8.4 Input Mode and Edit Mode

The EDIT program is always waiting for you to type something in. While in input mode, (see
section 25.8.7, "Adding New Lines," for more on input mode) each line you type becomes a
new line of the data set. In edit mode, the editor interprets each line you type as a command
("command mode" would have been a better name than "edit mode") and executes it, if pos-
sible, or gives you an error message if not. The two classic mistakes are the following:

• Entering a command when you're really in input mode, which adds a line to your data set
consisting of the command you thought you were entering.

• Entering what you think is a new line of text when it's really in edit mode, so that the edit-
or tries to interpret the text as a command and tells you something along the lines of
"'Dear Mom' is an unrecognized editor command."

When editing a numbered data set, this won't happen too easily, because the editor displays
the number of the line you are entering when you are in input mode. In the following ex-
ample, after Joe User entered each line and pressed Enter, the next line number appeared,
waiting for a new line. For the third line, instead of entering anything, he pressed Enter im-
mediately. This told the editor that he was done with input mode, so it went back to edit
mode.

INPUT
00010 Lo, a shadow of horror is risen
00020 In Eternity! Unknown, unprolific?
00030
EDIT
Self-closd, all-repelling: what Demon
INVALID SUBCOMMAND
input
INPUT
00030 Self-closd, all-repelling: what Demon
00040

Joe then typed the third line, but the editor thought he was typing a command (a subcom-
mand, actually, since EDIT is the command to start the editor, and commands within the edit-
or are considered subcommands). It displayed an error message saying that it couldn't find a
subcommand called "SELF-CLOSD." Joe then entered the command INPUT to return to in-

66 Chapter 25 The MVS ISPF Text Editor

put mode, the line number appeared, waiting for his text, and he entered it without a problem.

When editing an unnumbered data set, the lack of line numbers requires you to pay closer at-
tention to which mode you're in. The following example shows the same steps as the previous
one, only with an unnumbered data set.

INPUT
Lo, a shadow of horror is risen
In Eternity! Unknown, unprolific?
EDIT
Self-closd, all-repelling: what Demon
INVALID SUBCOMMAND
input
INPUT
Self-closd, all-repelling: what Demon
EDIT
INPUT
EDIT

Although no line number appeared after Joe typed the second line, pressing Enter without
typing anything on the third line produced the same effect: it put him in edit mode. The same
"Self-closd" mistake caused the same error message, and entering the INPUT command put
him back into input mode.

After inputting the "Self-closd" line properly, Joe pressed the Enter key a few more times.
Note how it shifted him between edit and input mode as long as he didn't enter anything at the
command line. This shows that pressing Enter once or twice is a good way to switch between
modes and to double-check which mode you're in.

When in input mode or edit mode, you can use all the same keys that you use to edit any TSO
command line: cursor left and right, insert, and delete.

25.8.5 Displaying the Data Set's Current Contents

Enter LIST to see the contents of the data set that you are editing. (This command is easy to
remember because it's the same as the TSO command to do the same thing.) If it has too
many lines to fit on the screen, you can enter beginning and ending line numbers. For ex-
ample, if you enter

list 20 30

while editing the numbered data set shown above, the editor responds with this:

00020 In Eternity! Unknown, unprolific?
00030 Self-closd, all-repelling: what Demon

25.8.5 Displaying the Data Set's Cur-
rent Contents 67

If you try this with an unnumbered data set, the editor responds with an error message telling
you that it can't list lines 20 and 30 because the data set is unnumbered. When editing an un-
numbered data set, you must list either the whole data set or just the current line.

25.8.6 The Current Line

At any given time, the editor treats one line of your data set as the "current" line. It's import-
ant to be aware of which line is current because certain commands (like DELETE) have a de-
fault action of only acting on the current line.

With a command whose default action is to act on the whole data set, like LIST, you can add
a line number to refer to a specific line or an asterisk to refer to the current line. For example,
to list just the current line, enter this:

list *

You'll probably enter this command often, because it's the best way to check on which line is
current.

The commands UP and DOWN let you change the current line. For example, if the fifth line is
current, entering

up 2

makes the third line current. If you enter a number that's too big, like

up 1000

you won't get an error message; the editor just makes the first line current. DOWN works the
same way: entering it with a number greater than the number of lines in your data set makes
the last line current. (For a simpler way to jump to the top or bottom of your data set, enter
the commands TOP or BOTTOM.)

Be careful when using the LIST command to view the whole data set. After viewing the data
set, the last listed line becomes the current one regardless of which line was current before
you entered the command. Try this by entering LIST alone, pressing Enter, and then entering
LIST * to see which is the new current line.

25.8.7 Adding New Lines

The examples in section 25.8.4, "Input Mode and Edit Mode," show how to use the INPUT
command to add new lines. Remember, once in input mode, you remain there until you enter
a line with nothing on it by pressing Enter when the editor is waiting for you to type in a new

68 Chapter 25 The MVS ISPF Text Editor

line.

If you enter INPUT with no operands in edit mode, the editor puts you in edit mode and ap-
pends each new line that you enter to the end of your data set. Adding new lines between ex-
isting lines depends on whether you are editing a numbered or unnumbered data set.

When editing a numbered data set, you have a little more flexibility for entering new lines.
The simplest way is to enter the new line number followed by the new line while in edit
mode.

If you enter

25 (You gotta love this Blake guy)

and press the Enter key, the editor adds the line and returns you to edit mode. If you then
enter the LIST command to see how the data set looks, you'll see this:

00010 Lo, a shadow of horror is risen
00020 In Eternity! Unknown, unprolific?
00025 (You gotta love this Blake guy)
00030 Self-closd, all-repelling: what Demon

If you want to enter more than one new line, use the INPUT command, but with two oper-
ands: the number of the line after which you want to begin and the increment to increase the
line number. If you omit the second operand, the editor assumes a default of 10. This default
value could cause a problem; for the data set above, if you enter

INPUT 20

then the new line after line 20 would be line 30. As it already has a line 30, it gives you an er-
ror message saying

INPUT TERMINATED, NEXT LINE NUMBER IS 30

If, on the other hand, you entered

INPUT 20 2

then you would be in input mode to enter line 22, then 24, and so forth until you entered line
28. After 28, you would get the same error message, because 30 comes after 28. For sub-
sequent INPUT commands in that editing session, it will assume an increment of 2 until you
reset it with a similar command.

After squeezing new lines between the existing ones, you might want to occasionally set all

25.8.7 Adding New Lines 69

the line numbers back to multiples of 10 by entering the command RENUM in Edit mode.

To input new lines between existing lines in an unnumbered data set, use the asterisk denot-
ing "current line" with the INPUT command. First, use the UP, DOWN, and LIST * com-
mands to find the line just before the place where you want to insert new lines. For example,
let's say Joe User is editing the following data set.

The shadowy daughter of Urthona stood before red Orc
When fourteen suns had faintly journey'd o'er his dark abode;
His food she brought in iron baskets, his drink in cups of iron;
Crown'd with a helmet & dark hair the nameless female stood.

He makes the second line current and enters LIST * to make sure it's current. It displays by
itself, so he knows that he's in the right place. He enters

INPUT *

and then, underneath it,

(Fourteen suns? What a wildman!)

and then presses Enter twice to show that he only wants to input that one line. When he enters
LIST again to see the whole data set, he sees this:

The shadowy daughter of Urthona stood before red Orc
When fourteen suns had faintly journey'd o'er his dark abode;
(Fourteen suns? What a wildman!)
His food she brought in iron baskets, his drink in cups of iron;
Crown'd with a helmet & dark hair the nameless female stood.

25.8.8 Editing Existing Lines

To edit a string in the current line, use the CHANGE command. Its operands are the string to
replace and the new one to put there, both enclosed in apostrophes. For example, if the cur-
rent line is

His food she brought in iron baskets, his drink in cups of iron;

and you enter

change 'cups of iron' 'a plaid Thermos'

then entering LIST * shows that the line now reads:

70 Chapter 25 The MVS ISPF Text Editor

His food she brought in iron baskets, his drink in a plaid Thermos;

To replace the entire current line, you can enter an asterisk followed by the new line while in
edit mode, like this:

* Here is text for a new line

Both of these tricks for editing existing lines work for numbered and unnumbered data sets.
You can take the last trick a step further for numbered data sets; if the line you want to re-
place is not the current line, but you know its number, enter its number followed by the new
contents of the line. (Replacing the current line by entering an asterisk and the new text is ac-
tually a variation on this; remember, the asterisk acts as a substitute for the current line's line
number.)

25.8.9 Deleting Lines

Entering DELETE by itself deletes the current line. To delete a range of lines from a
numbered data set, enter DELETE followed by the line numbers of the first and last lines to
delete. For example, entering

DELETE 40 90

deletes lines 40, 90, and all the lines between them.

To delete multiple lines from an unnumbered data set, first make the first line to delete the
current line. Then, enter the command to delete the current line, followed by the total number
of lines you want to delete. For example, entering

DELETE * 5

will delete the current line and the four lines following it.

25.8.10 Copying Lines

Whether you are copying lines in a numbered or unnumbered data set, the syntax for specify-
ing the lines to copy is just like the syntax for indicating lines to delete. The COPY command
takes one more parameter: a number telling you where to put the copy.

To copy lines in a numbered data set, you need three parameters after the COPY command:
the first of the lines to copy, the last of the lines to copy, and the line number where the copy
should start. For example, the command

COPY 20 50 95

25.8.9 Deleting Lines 71

means "make a copy of lines 20 through 50 and start it at line 95." If line 95 exists, it starts
the copy right after it.

With an unnumbered data set, you must first make the first of the lines to copy your current
line. As with deleting lines in an unnumbered data set, your first parameter is the asterisk and
the second is the number of lines you want to copy. The third parameter is the position of the
line just before where you want to put your copy. If you picture the data set being numbered
in increments of one (as opposed to the increments of 10 more popular in numbered data
sets), then this would be the line number of the target line. For example, in the following data
set,

The shadowy daughter of Urthona stood before red Orc
When fourteen suns had faintly journey'd o'er his dark abode;
His food she brought in iron baskets, his drink in cups of iron;
Crown'd with a helmet & dark hair the nameless female stood.
A quiver with its burning stores, a bow like that of night
When pestilence is shot from heaven--no other arms she need:

we want to copy the lines beginning "Crown'd with a helmet," "A quiver with" and "When
pestilence" and put the copy after the line "When fourteen suns." First, make the line
"Crown'd with a helmet" the first line; then, the command

COPY * 3 2

tells the editor "copy three lines, beginning with the current one (represented by the asterisk)
and put the copy after the second line."

25.8.11 Duplicating Lines

Duplicating the current line of your data set involves using the COPY command with the as-
terisk. Section 25.8.10, "Copying Lines," shows that when you copy a line or lines, you indic-
ate the lines to copy and the line after which to put the copy. Using the asterisk to indicate the
current line as both of these parameters, you can type

COPY * *

to tell the editor, "Make a copy of the current line, and put the copy right after itself."

25.8.12 Moving Lines

Move lines with the MOVE command. For numbered and unnumbered data sets, the syntax is
the same as when copying. The only difference is, after you've executed the command, the
original won't exist anymore—it will be in the location specified by the third parameter of

72 Chapter 25 The MVS ISPF Text Editor

either of the following commands:

MOVE firstline lastline destination

for numbered data sets or

MOVE * lines destination

for unnumbered data sets.

25.8.13 Searching for Text

The FIND command does a case-sensitive search for the string entered as its operand. En-
close the string in apostrophes. For example, entering

find 'helmet'

when the first of the earlier passage's lines is current makes the fourth line the current line be-
cause it has the phrase "Crown'd with a helmet." Entering

find 'potrzebie'

causes the editor to look for, but not find this string, and it gives you the message TEXT NOT
FOUND. Entering find 'helmet' twice in a row displays the TEXT NOT FOUND mes-
sage the second time, because the search always begins at the current line and the passage has
no more occurrences of the word "helmet" after it finds it the first time.

If you want to search for something with an apostrophe in it, you can enclose your search
string in quotation marks. For example, when searching from the top of the passage, you
could enter

find "o'er"

to find the line with the phrase "journey'd o'er his dark abode." That line then becomes the
current line.

25.8.14 Saving Your Changes

To save your changes, simply enter SAVE while in edit mode. See the next section for in-
formation on quitting and saving in one command.

25.8.15 Quitting the TSO Editor

The END command tells the editor that you want to return to the TSO prompt. If you have any

25.8.13 Searching for Text 73

unsaved changes, it tells you:

NOTHING SAVED
ENTER SAVE OR END-

At this point, enter END to quit without saving your changes or SAVE to save them. If you
enter SAVE, it returns you to edit mode, waiting for another command. (You'll probably want
to enter END again; this time, it won't give you the message about unsaved changes.)

To save your work and quit with one command, enter the following:

END SAVE

The editor saves your data set and return you to the TSO prompt. To quit without saving your
changes, enter this:

END NOSAVE

25.8.16 On-line Help and the TSO Editor

Entering HELP EDIT at the TSO prompt gives you several screens of information about the
EDIT program. Most of it is information about the command-line parameters that you can
add when starting up the EDIT program, and not help about actions you can take within the
EDIT program, but this is what the TSO help does: it tells you about the syntax of commands
typed at the TSO prompt.

The first part of the information displayed by HELP EDIT is a section called SUBCOM-
MANDS that lists the commands that you can use in edit mode. Including the ones described
in this section, the editor has over 30 of these subcommands. One of them is HELP, which
shows that you can get help from within the editor.

If you enter HELP by itself in the editor's edit mode, it lists the subcommands and tells you
this:

FOR MORE INFORMATION ENTER HELP SUBCOMMANDNAME OR HELP HELP

In other words, you can enter HELP followed by one of the subcommand names to find out
more about that particular subcommand. This includes the HELP subcommand it-
self—entering HELP HELP tells you more about the use of the HELP command within the
text editor.

74 Chapter 25 The MVS ISPF Text Editor

Chapter 26 Using an MVS System
26.1 Printing Data Sets
There are several ways to print data sets. Many involve printing the result of a batch job; in a
case like this, you add certain commands to the JCL part of the job telling it to route output to
a particular printer.

The simplest way to print a data set uses the PRINTDS or DSPRINT programs, whichever is
available on your system. At their most basic level, both of these commands require the same
information from you:

• The data set you want to print.

• The name of the printer to which you want to send the data set.

The main difference between the two is that DSPRINT assumes that the first operand is the
data set to print and the second identifies the printer. With PRINTDS, you can enter them in
any order, but you must include the words DATASET and DEST (for "destination"), putting
the appropriate information in parentheses.

For example, to use PRINTDS to send the data set BLAKE.TEXT to the printer called
ACCTNG, enter this:

printds dataset(blake.text) dest(acctng)

With the DSPRINT command, you enter this:

dsprint blake.text acctng

Ask about the name of the closest mainframe printer, which each site's system administrator
assigns.

Other differences between PRINTDS and DSPRINT lie in the additional operands available
to control their print output. One that you will find useful with both is NONUM. It tells the
command, "If the data set is numbered, don't print the numbers." The TSO on-line help tells
you more about other operands for these commands.

26.2 Command Files
A CLIST (pronounced "see-list") is a program written in the TSO command language. In oth-

75

er words, it's a data set consisting of a series of TSO commands. CLISTs can be complex, but
simple ones consisting of the TSO commands that you already know can be quite useful.

CLISTs are usually stored as members of a partitioned data set called either CLIST or
whatever.CLIST, where whatever is a name you supply.

There are two ways to execute a particular CLIST. The first uses the EXEC command. To ex-
ecute a CLIST in MYCLISTS.CLIST with a member name of MYTEST, enter the following:

exec myclists(mytest)

If you stored MYTEST in a partitioned data set called only CLIST, execute it with this com-
mand:

exec (mytest)

You can execute a CLIST by just entering its name. To execute MYTEST, type

mytest

at the TSO prompt. How will the system know the partitioned data set in which to find it? It
looks for a special ddname of SYSPROC. This means that you must allocate the partitioned
data set that holds your CLISTs with a ddname of SYSPROC by entering a command like
this:

allocate dataset(myclists.clist) ddname(sysproc)

If you want to let others use the MYCLISTS CLISTs while you use them, add the SHR para-
meter to this allocation command.

People often use CLISTs to allocate several data sets at once. Many application programs re-
quire you to do several allocations before starting them up; creating a new member of a
CLIST partitioned data set with the required ALLOCATE commands means that you only
have to type that member's name to do all those allocations.

For example, let's say the MVS version of the UpRiteBase database program requires you to
allocate the partitioned data set holding your data files with the ddname URDATA and the
PDS holding the command procedures to use with that data as URPROC. You store your data
as members of the MYDATA.DAT PDS and your procedures in the MYPROCS.PRC PDS, and
you start UpRiteBase by entering URBASE. You can automate the allocations and the
URBASE part by creating a new member of the partitioned data set holding your CLISTs
called UR with the following commands in it:

76 Chapter 26 Using an MVS System

/* UR: allocate procedure and database files for UpRiteBase, */
/* then start up UpRiteBase. 2/23/94 Joe User */
FREE DD(URPROC URBASE)
ALLOCATE DS(MYDATA.PRC) DD(URPROC) SHR
ALLOCATE DS(MYPROCS.DAT) DD(URBASE) SHR
URBASE

Note three things about this CLIST:

• The first two lines begin with /* and end with */. TSO ignores everything between the
asterisks, so they are used to demarcate comments describing the purpose of the CLIST.
Among other things, the comments shows that this member of the CLISTs PDS is called
UR.

• The FREE command frees up the ddnames before the subsequent lines allocate the data
sets, just in case these ddnames are already allocated.

• The CLIST finishes by starting up UpRiteBase for you with the URBASE command.

Using this CLIST, you only have to type "UR" and TSO performs all these tasks for you. In
addition to TSO commands, CLISTs can contain REXX commands. In their attempt to make
a command language that is portable from one operating system to another, IBM made the
basic rules of REXX the same on MVS systems as on CMS systems. See section 21.1
(VM/CMS "Command Files") for more on REXX.

26.2.1 The Automatic Logon Command File

When you log on to your MVS account, TSO looks for a sequential data set named LO-
GON.CLIST. If it finds it, it automatically executes it. You will find this useful for automat-
ing actions that you want performed every time you log on. For example, if you keep your
other CLISTs in a partitioned data set called MYCLISTS.CLIST, you could put the line

ALLOCATE DATASET(MYCLISTS.CLIST) DDNAME(SYSPROC)

in your LOGON.CLIST data set so that you could then invoke any one of your CLISTs by
typing its name at the TSO prompt. A LOGON.CLIST that ends with the command ISPF
automatically starts up ISPF for you when you log on.

26.3 Communicating with Other Users
MVS offers no built-in mail facility. Many companies buy mail programs to run on their
MVS system; check to see whether your site has one installed.

26.2.1 The Automatic Logon Com-
mand File 77

You can use the SEND command to send a one-line message to someone else's terminal.
(Most operating systems have some equivalent command; it seems a little more important in
MVS because of the lack of a built-in mail facility.) To send the message "Are we still on for
lunch?" to Mary Jones' MJONES user ID, Joe User would enter

send 'Are we still on for lunch?' user(mjones)

If Mary is logged on, the message appears on her screen followed by the user ID of the per-
son who sent it:

Are we still on for lunch? JOEUSER

If Mary is not logged on when Joe enters the SEND command asking her about lunch, he will
see a message like this:

USER(S) MJONES NOT LOGGED ON OR TERMINAL DISCONNECTED, MESSAGE CANCELLED

He could then type the command again, adding the SAVE operand at the end. This tells TSO
to display the message the next time Mary logs on. But an even better alternative exists: he
could have added the operand LOGON when he first typed the command:

send 'Are we still on for lunch?' user(mjones) logon

This tells the system, "If Mary is logged on now, display this on her screen right away; other-
wise, display it the next time she logs on."

You may have noticed that the message is enclosed in apostrophes. If you want one displayed
in your message, enter two where you want it to appear. For example, entering

send 'Looks like I''ll have to work through lunch' user(mjones)

displays the following on Mary's screen:

Looks like I'll have to work through lunch JOEUSER

Another way to send a message to appear on someone's screen is with the MSGDATASET op-
tion of the TRANSMIT command. For more on this, see section 26.3.1, "Sending Files."

26.3.1 Sending Files

Data sets are sent from one ID to another with the TRANSMIT command and received with
the RECEIVE command. You have two options when you send a data set with TRANSMIT:

78 Chapter 26 Using an MVS System

• If you send a data set as a regular data set, RECEIVE stores it with the recipient's other
data sets.

• If you send it as a message, RECEIVE displays it on the screen for them.

It's not unusual to send two data sets this way simultaneously. One might be a data file, and
the other, a memo about the first.

The simplest form of TRANSMIT just includes the name given to the recipient's system, the
user ID, and the data set to send. To send the BLAKE.TEXT data set to the MJONES ID on
an MVS system called SATURN, the command is:

transmit saturn.mjones dataset(blake.text)

After you press the Enter key, TSO displays a message telling you whether it sent the data set
successfully and if not, why.

To send a message stored in the data set YOMARY.TEXT along with BLAKE.TEXT so that
the RECEIVE command displays the message on Mary's screen when she uses RECEIVE to
pull in BLAKE.TEXT, enter this:

transmit saturn.mjones dataset(blake.text) msgdataset(yomary.text)

You can't store the message in just any data set; it must meet the following requirements:

• It must be either a sequential data set or a specific member of a partitioned data set.

• It must be allocated with a fixed, blocked record format: RECFM(F,B).

• It must have a logical record length of 80: LRECL(80).

If you try to send a data set that doesn't meet these requirements, you'll get an error message
saying that the message data set "contains attributes that are not valid."

The data set sent with the DATASET operand doesn't have to be sequential, but part of this
command's flexibility may become a limitation when you try to send a partitioned data set.
The flexibility lies in the capability to send data sets to other, non-MVS systems: if your
MVS system's company or university site has other systems connected to it through a net-
work, you can send data sets to them using the same syntax. For example, if you want to send
the BLAKE.TEXT data set to Mary's MJONES ID on a VAX system called NEPTUNE, enter
this:

transmit neptune.mjones dataset(blake.text)

26.3.1 Sending Files 79

Although TRANSMIT can send partitioned data sets as well as sequential data sets, remember
that the concept of a PDS is peculiar to MVS—sending one to a machine running another op-
erating system doesn't mean that the other operating system can do anything with it.

You can, however, send a particular member of a PDS and instruct TRANSMIT to treat it as a
sequential data set by adding the SEQ operand. For example, the following command sends
the TUTORIAL member of the REXX.CLIST PDS:

transmit neptune.mjones dataset(rexx.clist(tutorial)) seq

What happens if you just enter TRANSMIT and a user ID, without specifying anything to
send? The TRANSMIT command assumes you want to send a message, not an existing data
set. After prompting you to enter your message's recipient it displays an editor to allow you to
enter that message, as shown in Figure 26.1.

DATA FOR SATURN.MJONES
00001
00002
00003
00004
00005
00006
00007
00008
00009
00010
00011
00012
00013
00014
00015
00016
00017
00018
00019
00020
00021
00022
PF3 = FINISHED | PF7 = BACKWARD, | PF8 = FORWARD | PA1 = ABORT

Figure 26.1 Data entry screen for a message sent with TRANSMIT.

The editor is a simplified version of the ISPF editor. As the bottom line shows, PF7 and PF8

80 Chapter 26 Using an MVS System

scroll backward and forward a page at a time if you enter more than 22 lines of text, PF3 tells
the editor that you are finished, and PA1 indicates that you want to abort this message.

26.3.2 Receiving Mail and Data Sets

The TRANSMIT command doesn't automatically add data sets to the recipient's disk space.
They wait in a special area until they are pulled in with the RECEIVE command. If you enter
RECEIVE when no data sets or messages are waiting for you to pull them in, TSO displays a
message similar to this:

You have no messages or data sets to receive.

If there are one or more data sets waiting for you, it displays either the first message sent, a
prompt asking you about a data set that was sent to you, or both if the message was sent with
the data set. The prompt tells you the name of the data set, who sent it, and what system they
sent it from. For example, let's say Mary Jones sent the data set STATS.TEXT to the
JOEUSER ID from her ID on an MVS system identified as SATURN. When Joe enters the
RECEIVE command, the system responds with a message like this:

Dataset MJONES.STATS.TEXT from MJONES on SATURN
Enter restore parameters or 'DELETE' or 'END' +

Although the prompt only offers two choices to respond with, you actually have several.
Pressing Enter without entering anything is the equivalent of typing the word RESTORE as a
response. It means "put this data set, as is, with the rest of my data sets." If Mary named it
MJONES.STATS.TEXT before she sent it and your ID is JOEUSER, RECEIVE stores it as
JOEUSER.STATS.TEXT.

Responding with DELETE means "I don't want that data set; delete it." Responding with END
tells the RECEIVE program to leave off where it was and return to the TSO prompt. The next
time you start up RECEIVE, it gives you the same prompt about the data set where you left
off.

To restore the data set with a name that differs from the one shown in the message, enter the
word "DATASET" followed by parentheses surrounding the new name. For example, if the
RECEIVE program displayed the message above and you want to save the STATS.TEXT
data set as STATSFEB.TEXT, respond by entering this:

dataset(statsfeb.text)

Of course, since you probably don't know the names of all your current data sets, you may not
notice that an incoming data set has the same name as one already in your collection. If you

26.3.2 Receiving Mail and Data Sets 81

press Enter to tell RECEIVE to recover the data set and you already have one with that name,
RECEIVE displays a message like this:

Dataset 'JOEUSER.STATS.TEXT' already exists. Reply 'R' to replace it. +

As the message tells you, entering an "R" and pressing Enter replaces the existing
STATS.TEXT data set with the one being recovered. You can also respond with an alternate
name, the same way you can respond to the "Enter restore parameters" prompt with data-
set(new.dsname). When you press Enter, RECEIVE saves the incoming data set with
the new name. You can also respond to the "already exists" prompt by typing "END," which
returns you to the TSO prompt. In fact, this is the default action, so pressing Enter without
typing anything also returns you to the TSO prompt, leaving any unrecovered data sets for
you to deal with later.

Most other potential responses to the "Enter restore parameters" prompt let you specify alloc-
ation details of the data set to recover, if you want to change them. To see them before recov-
ering the data set, enter a question mark (?) in response to the prompt.

If you never respond with END, the RECEIVE program goes through the waiting messages
and data sets one a time, giving the same information and asking the same question with each.
When none are left, it tells you

No more files remain for the receive command to process.

Many users want to check whether data sets are waiting for them every time they log on.
Your ID may be set up to invoke the RECEIVE command each time you log on; if not, you
can easily add it to (or create) a LOGON.CLIST data set. (Section 26.2.1, "The Automatic
Logon Command File," covers LOGON.CLIST in more detail.)

26.4 ISPF
Chapter 25, "The MVS ISPF Text Editor," showed how to start ISPF, pick the appropriate
choice from the main (or "primary") menu to edit a data set, and fill out the entry panel to in-
dicate the data set you want to edit. Most of the important things that you do with ISPF begin
with similar steps: selecting a menu choice and then filling out a panel to indicate the data set
that you want to act on.

As you go from menu to menu in ISPF, you may display a menu that you didn't mean to. As
the bottom of the screen shows you, the PF3 key ("END") ends the display of the current
menu—in other words, it backs out of that menu to the previous one. To leave the main
menu, note how the last menu choice has an "X" instead of a number preceding it, as shown
in Figure 26.2. This means that entering X at the OPTION ===> prompt returns you to the

82 Chapter 26 Using an MVS System

TSO prompt.

----------------------- ISPF/PDF PRIMARY OPTION MENU ------------------------
OPTION ===> _

USERID -JOEUSER
0 ISPF PARMS - Specify terminal and user parameters TIME - 09:24
1 BROWSE - Display source data or output listings TERMINAL - 3278
2 EDIT - Create or change source data PF KEYS - 24
3 UTILITIES - Perform utility functions
4 FOREGROUND - Invoke language processors in foreground
5 BATCH - Submit job for language processing
6 COMMAND - Enter TSO Command, CLIST, or REXX exec
7 DIALOG TEST - Perform dialog testing
8 LM UTILITIES- Perform library administrator utility functions
9 IBM PRODUCTS- Additional IBM program development products

10 SCLM - Software Configuration and Library Manager
D DB2 - DB2 Facilities
H HSM - DFHSM Facilities
C CHANGES - Display summary of changes for this release
S SDSF - System Display and Search Facility

SO DFSORT - DFSORT Facility
T TUTORIAL - Display information about ISPF/PDF
X EXIT - Terminate ISPF using log and list defaults

F1=HELP F2=SPLIT F3=END F4=RETURN F5=RFIND F6=RCHANGE
F7=UP F8=DOWN F9=SWAP F10=LEFT F11=RIGHT F12=RETRIEVE

Figure 26.2 ISPF primary option menu.

If you do anything more than browse around the menus in ISPF, like running programs or
copying, renaming, editing or deleting data sets, then ISPF may keep a log of your activity.
This log lists the date, time, and nature of each transaction. When you exit from the main
menu, you may see a screen asking what you want to do with that log; Figure 26.3 shows an
example.

------------------- SPECIFY DISPOSITION OF LOG DATA SET ---------------------
COMMAND ===>

LOG DATA SET DISPOSITION LIST DATA SET OPTIONS NOT AVAILABLE
------------------------- -----------------------------------
Process option ===>
SYSOUT class ===> A
Local printer ID ===>

26.4 ISPF 83

VALID PROCESS OPTIONS:
PD - Print data set and delete
D - Delete data set without printing
K - Keep data set (allocate same data set in next session)
KN - Keep data set and allocate new data set in next session

Press ENTER key to complete ISPF termination.
Enter END command to return to the primary option menu.

JOB STATEMENT INFORMATION: (Required for system printer)
===> //JOEUSERA JOB (ACCOUNT),'NAME'
===> //*
===> //*

Figure 26.3 Entry panel for dealing with ISPF log.

The four "VALID PROCESS OPTIONS" are fairly self-explanatory; you'll probably want to
choose D most of the time to delete the log so that it doesn't take up space. You might want to
try entering K at the Process Option prompt some time to see what the log looks like.
When ISPF returns you to the TSO prompt, it displays a message similar to this:

JOEUSER.SPFLOG1.LIST HAS BEEN KEPT.
READY

Now you know the name of the data set where the system stored this log. You can then use
the LIST command to look at it.

If you choose K, ISPF continues to use this data set to log transactions the next time you use
ISPF. If you choose KN, ISPF saves your transactions but create a new log data set the next
time you use ISPF.

26.4.1 Allocating Data Sets

Selecting UTILITIES from the main ISPF menu displays a new menu that looks similar to
the one shown in Figure 26.4. As the description of the DATASET choice tells you, choosing
it allows you to allocate data sets. Selecting DATASET displays a menu similar to the one
shown in Figure 26.5.

84 Chapter 26 Using an MVS System

------------------------- UTILITY SELECTION MENU ----------------------------
OPTION ===>

1 LIBRARY - Compress or print data set. Print index listing.
Print, rename, delete, or browse members

2 DATASET - Allocate, rename, delete, catalog, uncatalog, or
display information of an entire data set

3 MOVE/COPY - Move, copy, or promote members or data sets
4 DSLIST - Print or display (to process) list of data set names

Print or display VTOC information
5 RESET - Reset statistics for members of ISPF library
6 HARDCOPY - Initiate hardcopy output
8 OUTLIST - Display, delete, or print held job output
9 COMMANDS - Create/change an application command table
10 CONVERT - Convert old format menus/messages to new format
11 FORMAT - Format definition for formatted data Edit/Browse
12 SUPERC - Compare data sets (Standard dialog)
13 SUPERCE - Compare data sets (Extended dialog)
14 SEARCH-FOR - Search data sets for strings of data

Figure 26.4 ISPF Utility menu.

---------------------------- DATA SET UTILITY -------------------------------
OPTION ===>

A - Allocate new data set C - Catalog data set
R - Rename entire data set U - Uncatalog data set
D - Delete entire data set S - Data set information (short)
blank - Data set information

ISPF LIBRARY:
PROJECT ===> JOEUSER
GROUP ===> FIELDING
TYPE ===> TEXT

OTHER PARTITIONED OR SEQUENTIAL DATA SET:
DATA SET NAME ===>
VOLUME SERIAL ===> (If not cataloged, required for option "C")

DATA SET PASSWORD ===> (If password protected)

Figure 26.5 ISPF data set utility menu.

26.4.1 Allocating Data Sets 85

Enter the letter "A" at the OPTION ===> prompt and the name of the data set to allocate in
the ISPF LIBRARY section of the panel. When you press Enter, ISPF displays ALLOCATE
NEW DATA SET screen, where you enter the details of how you want your data set alloc-
ated. As you can see in Figure 26.6, this screen includes the data set name you entered on the
DATA SET UTILITY screen. The crucial fields on the ALLOCATE NEW DATA SET
screen are covered in section 24.1.7, "Allocating Data Sets."

------------------------ ALLOCATE NEW DATA SET ------------------------------
COMMAND ===>

DATA SET NAME: JOEUSER.FIELDING.TEXT

VOLUME SERIAL ===> USERMD (Blank for authorized default volume) *
GENERIC UNIT ===> (Generic group name or unit address) *
SPACE UNITS ===> TRACK (BLKS, TRKS, or CYLS)
PRIMARY QUANTITY ===> 2 (In above units)
SECONDARY QUANTITY ===> 2 (In above units)
DIRECTORY BLOCKS ===> 0 (Zero for sequential data set)
RECORD FORMAT ===> FB
RECORD LENGTH ===> 80
BLOCK SIZE ===> 27920
EXPIRATION DATE ===> (YY/MM/DD, YYYY/MM/DD

YY.DDD, YYYY.DDD in Julian form
DDDD for retention period in days
or blank)

(* Only one of these fields may be specified)

Figure 26.6 Data set allocation screen.

It's still a lot of trouble, dealing with all those allocation parameters; luckily, ISPF offers you
a way to model a new data set's allocation parameters on those of an existing data set. On the
DATA SET UTILITY screen, if you enter an existing data set's name and press the Enter key
without entering anything at the OPTION ===> prompt (note how the OPTION choices in-
clude "blank - Data set information") ISPF displays allocation information about the data set
whose name you entered. Figure 26.7 shows an example of the displayed information.

-------------------------- DATA SET INFORMATION -----------------------------
COMMAND ===>

86 Chapter 26 Using an MVS System

DATA SET NAME: JOEUSER.BLAKE.TEXT

GENERAL DATA: CURRENT ALLOCATION:
Volume serial: USERMC Allocated Tracks: 1
Device type: 3390 Allocated extents: 1
Organization: PS
Record format: VB
Record length: 84
Block size: 6233 CURRENT UTILIZATION:
1st extent Tracks: 1 Used Tracks: 1
Secondary Tracks: 5 Used extents: 1

Creation date: 1994/06/04
Expiration date: ***NONE***

Figure 26.7 Data set allocation information.

When you leave this screen and go through the steps of allocating a new data set, the next
time you reach the ALLOCATE NEW DATA SET screen, ISPF fills out the allocation para-
meters of the new data set with those of the existing data set about which you just inquired.
Since you entered the name of the new data set that you want to allocate in order to reach the
ALLOCATE NEW DATA SET screen, all that remains when viewing that screen is to press
Enter to allocate the new data set with the parameters of the existing data set.

26.4.2 Copying Data Sets

Copying a data set in TSO or a file in another operating system usually means "make me a
new file that is a copy of this data set, and give the copy the following name." When you do
this in ISPF, there's a catch: the data set specified as the destination of the copy operation
must already exist. In other words, you must allocate it before you begin the copy operation.
The best way to do this is to allocate the copy with the same allocation parameters as the data
set being copied, as explained in section 24.4.1, "Allocating Data Sets."

Once it's allocated, you can perform the copy operation. We saw in the last section that after
selecting UTILITIES from the main ISPF menu, selecting DATASET from the UTILITIES
menu makes it possible to allocate data sets. Another choice on the UTILITIES menu is
MOVE/COPY. Selecting it displays the panel shown in Figure 26.8 for you to fill out.

--------------------------- MOVE/COPY UTILITY -------------------------------

26.4.2 Copying Data Sets 87

OPTION ===>

C - Copy data set or member(s) CP - Copy and print
M - Move data set or member(s) MP - Move and print
L - Copy and LMF lock member(s) LP - Copy, LMF lock, and print
P - LMF Promote data set or member(s) PP - LMF Promote and print

SPECIFY "FROM" DATA SET BELOW, THEN PRESS ENTER KEY

FROM ISPF LIBRARY: ------ Options C, CP, L, and LP only -------
PROJECT ===> JOEUSER | |
GROUP ===> BLAKE ===> ===> ===>
TYPE ===> TEXT
MEMBER ===> (Blank or pattern for member selection list,

'*' for all members)

FROM OTHER PARTITIONED OR SEQUENTIAL DATA SET:
DATA SET NAME ===>
VOLUME SERIAL ===> (If not cataloged)

DATA SET PASSWORD ===> (If password protected)

Figure 26.8 ISPF screen for moving or copying data sets.

To copy a data set, enter "C" at the OPTION ===> prompt and the name of the data set to
copy in the FROM ISPF LIBRARY section of the panel. When you press Enter, ISPF dis-
plays a screen similar to the one shown in Figure 26.9 to find out the name of your copy.

COPY --- FROM JOEUSER.BLAKE.TEXT --
COMMAND ===>

SPECIFY "TO" DATA SET BELOW.

TO ISPF LIBRARY:
PROJECT ===> JOEUSER
GROUP ===>
TYPE ===>
MEMBER ===>

TO OTHER PARTITIONED OR SEQUENTIAL DATA SET:
DATA SET NAME ===>
VOLUME SERIAL ===> (If not cataloged)

88 Chapter 26 Using an MVS System

DATA SET PASSWORD ===> (If password protected)

"TO" DATA SET OPTIONS:
IF PARTITIONED, REPLACE LIKE-NAMED MEMBERS ===> (YES or NO)
IF SEQUENTIAL, "TO" DATA SET DISPOSITION ===> (OLD or MOD)
SPECIFY PACK OPTION FOR "TO" DATA SET ===> (YES, NO or blank)

Figure 26.9 ISPF screen prompting for destination of copy operation.

In the TO ISPF LIBRARY section, enter the name of the data set to which you want to copy
your "FROM" data set. Press Enter, and ISPF makes the copy and returns you to the MOVE/
COPY UTILITY screen, with the message "DATA SET COPIED" displayed in the upper-
right.

26.4.3 Renaming Data Sets

We've already seen (Figure 26.4) the menu that appears when you select UTILITIES from the
main ISPF menu. On this menu, the LIBRARY choice offers you utilities for dealing with
members of partitioned data sets, and the DATASET choice offers you utilities for dealing
with sequential data sets. So, to rename (or delete) a member of a PDS, select LIBRARY; to
rename or delete a sequential data set, select DATASET.

When you select LIBRARY, ISPF displays a panel similar to the one shown in Figure 26.10.
At the OPTION ===> prompt, enter an "R" and use your Tab key to move to the ISPF LIB-
RARY part of the panel so that you can specify the data set member to rename. In the
PROJECT, GROUP, and TYPE fields, enter the name of the partitioned data set containing
the member you want to rename. In the MEMBER field, enter the member's name, and in the
NEWNAME field, enter its new name. (When renaming a member of a PDS you can't change
any part of the PDS name; whatever the member's name becomes, it's still part of the same
PDS.) When you press Enter, ISPF renames the data set and displays a message in the upper-
right of the screen telling you that it did so.

---------------------------- LIBRARY UTILITY ----------------------------
OPTION ===>

blank - Display member list B - Browse member
C - Compress data set P - Print member
X - Print index listing R - Rename member
L - Print entire data set D - Delete member

26.4.3 Renaming Data Sets 89

I - Data set information S - Data set information (short)

ISPF LIBRARY:
PROJECT ===> JOEUSER
GROUP ===> URBASE ===> ===> ===>
TYPE ===> CLIST
MEMBER ===> URTEST (If "P", "R", "D", "B", or blank selected)
NEWNAME ===> UR (If "R" selected)

OTHER PARTITIONED OR SEQUENTIAL DATA SET:
DATA SET NAME ===>
VOLUME SERIAL ===> (If not cataloged)

DATA SET PASSWORD ===> (If password protected)

Figure 26.10 The ISPF library utility screen.

If Joe User pressed the Enter key after filling out the panel as shown in Figure 26.10, he
would rename the URTEST member of the URBASE.CLIST partitioned data set with a new
name of UR. After he pressed Enter, ISPF would display the message MEMBER URTEST
RENAMED in the upper-right of the screen.

To rename a sequential data set or an entire partitioned data set (as opposed to just renaming
one of the members of a PDS), you'll use the same panel you used to allocate a data set: the
DATA SET UTILITY screen (Figure 24.5). Display it by selecting DATASET from the
UTILITIES menu.

Enter "R" at the OPTION ===> prompt and the name of the data set to rename in the ISPF
LIBRARY section of the panel. Press Enter, and ISPF displays a panel similar to the one
shown in Figure 26.11 to learn the new name you want to give this data set.

---------------------------- RENAME DATA SET --------------------------------
COMMAND ===>

DATA SET NAME: JOEUSER.BLAKE.TEXT
VOLUME: USERME

ENTER NEW NAME BELOW: (The data set will be recataloged.)

ISPF LIBRARY:
PROJECT ===> JOEUSER

90 Chapter 26 Using an MVS System

GROUP ===> BLAKE
TYPE ===> BACKUP

OTHER PARTITIONED OR SEQUENTIAL DATA SET:
DATA SET NAME ===>

Figure 26.11 ISPF screen prompting you for the new name of your renamed data set.

The DATA SET NAME field at the top of this panel shows the name of the data set that you
said you wanted to rename. Now you only need to fill out the new name in the GROUP and
TYPE fields. After you do this and press Enter, ISPF displays the message "DATA SET RE-
NAMED" in the upper-right of the screen.

26.4.4 Deleting Data Sets

You may have noticed that the LIBRARY UTILITY and DATA SET UTILITY screens used
to rename data set members or entire data sets offered "D" as an alternative command to enter
at the OPTION ===> prompt. When you enter this and enter a data set member name on the
LIBRARY UTILITY screen, you delete that member from the specified partitioned data set,
leaving the PDS otherwise intact.

When you enter a "D" at the OPTION ===> prompt of the DATASET screen and a data set
name in the ISPF LIBRARY section, you delete the whole data set, whether sequential or
partitioned. When you press Enter, ISPF displays a screen similar to the one shown in Figure
26.12 to make sure that you really want to delete the specified data set.

---------------------------- CONFIRM DELETE ---------------------------------
COMMAND ===>

DATA SET NAME: JOEUSER.BLAKE.TEXT
VOLUME: USERME
CREATION DATE: 1994/06/20

INSTRUCTIONS:

Press ENTER key to confirm delete request.
(The data set will be deleted and uncataloged.)

26.4.4 Deleting Data Sets 91

Enter END command to cancel delete request.

Figure 26.12 ISPF screen confirming a request to delete a data set.

Press Enter to follow through and delete the data set or enter "END" at the COMMAND ===>
prompt to cancel the deletion. Either way, you return to the DATA SET UTILITY screen,
which will have a message in the upper right telling you either "DATA SET DELETED" or
"DATA SET NOT DELETED."

26.4.5 Displaying A Data Set's Contents

Because ISPF takes better advantage of your terminal than TSO, it has no direct equivalent to
the LIST command to put a data set's contents on your screen one screenful at a time from
beginning to end. Instead, ISPF has a utility called BROWSE that gives you more flexibility
when viewing a data set. Basically, it's just like the ISPF editor, but it won't let you change a
data set's contents.

All of the editor's commands for moving around and searching for text work the same when
you browse a data set. This means that when looking at the middle or end of a data set, you
can go backwards and look at the text before the currently displayed text, which you can't do
when you use LIST at the TSO command line.

To browse a data set, select BROWSE from the ISPF main menu. On the next screen, enter
the name of a sequential data set or a member of a partitioned data set and press Enter. ISPF
starts the BROWSE program with the beginning of your data set displayed on the screen.

26.4.6 Printing a Data Set

Print a data set or a member of a partitioned data set with the same LIBRARY UTILITY pan-
el (accessible by selecting LIBRARY from the UTILITIES menu) that you used to rename a
member of a PDS (Figure 26.10). Instead of entering "R" for "rename," you enter either "L"
to print a sequential data set or "P" to print a member of a PDS. Type the sequential data set
or PDS member's name in the ISPF LIBRARY section of the panel, press Enter, and you're
done.

26.5 A Sample MVS Session
One morning you log on to your JOEUSER ID, and you see the screen shown in Figure
26.13.

92 Chapter 26 Using an MVS System

ICH70001I JOEUSER LAST ACCESS AT 14:40:39 ON MONDAY, JANUARY 18, 1994
JOEUSER LOGON IN PROGRESS AT 14:42:38 ON JANUARY 18, 1994

* The system will be unavailable from 12:01 AM to 10 AM *
* Sunday January 24th for maintenance. *

Are those CLISTs ready or what? Give me whatever you have. LNIVEN

You have no messages or data sets to receive.
**** NATIVE TSO READY ****
READY

Figure 26.13 Joe User's logon messages one morning.

The message from the system administrator doesn't concern you, because you had no plans to
log on Sunday morning. The other message, from your friend Larry Niven, is more urgent;
you had promised to write him several CLISTs to use with the inventory database system he
is developing.

You may as well send him what you've done so far, but you want to see what you have first.
They're in a partitioned data set called INVEN.CLIST. You you list out the members of this
data set by entering the LISTDS command with the MEM operand and see the output shown
in Figure 26.14.

listds inven.clist mem
JOEUSER.INVEN.CLIST
--RECFM-LRECL-BLKSIZE-DSORG
FB 80 3120 PO

--VOLUMES--
USERMD

--MEMBERS--
ADD
DELETE
UPDATE
REPORT
TESTING

Figure 26.14 List of members in INVEN.CLIST.

26.5 A Sample MVS Session 93

The TESTING one was for playing with some of the CLIST commands. You delete it from
the PDS, because you don't need to send that one to Larry:

delete inven.clist(testing)

The other CLISTs were pretty good, but the UPDATE one is still giving you some problems.
No use putting off Larry further; you'll send him the whole PDS of CLISTs, but warn him
about the UPDATE CLIST in a separate message.

You type the message into a data set called FORLARRY.TEXT. The TRANSMIT command
can be picky about how these message data sets are allocated, so you allocate it by copying
the allocation details from the data set FORMARY.TEXT, which you sent to Mary Jones last
week:

allocate dataset(forlarry.text) like(formary.text)

You enter text into FORLARRY.TEXT with the ISPF editor. Because the editor is the second
choice on the ISPF main menu, you jump right to the editor by including a "2" on the com-
mand line when you start up ISPF:

ispf 2

After indicating the data set you want to edit on the EDIT ENTRY PANEL, you type in your
message. Figure 26.15 shows how it might look when you are done.

EDIT ---- JOEUSER.FORLARRY.TEXT ------------------------------ COLUMNS 001 072
COMMAND ===> SCROLL ===> PAGE
****** ***************************** TOP OF DATA ******************************
000100 Larry -
000200 I'm sending you INVEN.CLIST, which has the CLISTs. Most of them
000300 work fine, but the UPDATE one is still a little flaky. Let me
000400 know if you have any questions.
****** **************************** BOTTOM OF DATA ****************************

Figure 26.15 Joe's message to be sent to Larry.

After writing the message, you press PF4 to show that you've finished editing. (If you had
wanted to edit another data set, you would have pressed PF3, which would return you to the
screen where you enter the name of the data set to edit. This time, however, you no longer
need the editing program.)

94 Chapter 26 Using an MVS System

When you return to the TSO prompt, you are ready to send the CLISTs and their accompany-
ing message to larry on the SATURN system. You can do this with one command. It's a long
one, though; after you enter the first part, you type a plus sign to show TSO that you haven't
finished entering the command.

transmit saturn.lniven dataset(inven.clist) +

Then, you press Enter, finish typing the command,

msgdataset(forlarry.text)

and press Enter again. TSO displays a message showing you that it successfully transmitted
the CLIST partitioned data set and the accompanying message.

You'd better straighten out the UPDATE CLIST as soon as possible. It would be a good idea
to print out a hard copy so that you can sit down with a cup of coffee and write some notes on
it. Since the accounting department's mainframe printer is near the coffee machine, you'll
send the printout there so that you can pick it up and get your coffee in one trip. You enter the
command to print it:

printds dataset(inven.clist(update)) dest(acctng)

You're not even going to try to fix the UPDATE CLIST until you've had a good hard look at
the printout. You log off by typing

LOGOFF

and head for the printer and coffee machine.

26.5 A Sample MVS Session 95

96

	Fake Your Way through MVS
	Table of Contents
	This Section, the Rest of the Book
	Part I. MVS
	Chapter 22 MVS: An Introduction
	22.1 Batch Jobs
	22.2 Interacting with MVS
	22.2.1 TSO
	22.2.2 ISPF
	22.2.3 CICS
	22.2.4 Other MVS Components

	22.3 History

	Chapter 23 Getting Started with MVS
	23.1 Starting Up
	23.1.1 VTAM
	23.1.2 Logging On
	23.1.2.1 Reconnecting

	23.1.3 Entering Commands
	23.1.3.1 Aborting Screen Output
	23.1.3.2 Command Parameters
	23.1.3.3 Long Commands
	23.1.3.4 Case Sensitivity
	23.1.3.5 Command-Line Options

	23.1.4 Finishing Your MVS Session

	23.2 File Names
	23.2.1 Sequential and Partitioned Data Sets
	23.2.2 Line Numbers and Data Sets
	23.2.3 Naming Data Sets
	23.2.3.1 The Members of a Partitioned Data Set

	23.2.4 Wildcards

	23.3 How Files Are Organized
	23.4 Available On-line Help

	Chapter 24 Using Files in MVS
	24.1 The Seven Most Important Commands
	24.1.1 Common Error Messages
	24.1.2 Listing Data Set Names
	24.1.2.1 Listing a Catalog's Data Sets
	24.1.2.2 Listing a Partitioned Data Set's Members

	24.1.3 Looking at Data Sets
	24.1.4 Copying Data Sets
	24.1.4.1 Copying and Partitioned Data Sets

	24.1.5 Renaming Data Sets
	24.1.6 Deleting Data Sets
	24.1.7 Allocating Data Sets
	24.1.7.1 Allocating Existing Data Sets
	24.1.7.2 Allocating New Data Sets
	24.1.7.3 Unallocating Data Sets
	24.1.7.4 Finding Out a Data Set's Allocation Status

	24.1.8 Adding a Data Set to a Catalog

	Chapter 25 The MVS ISPF Text Editor
	25.1 The ISPF Text Editor
	25.2 Entering the ISPF Editor
	25.2.1 Customizing Your Editor's Environment

	25.3 Line Commands
	25.3.1 Adding New Lines
	25.3.2 Moving Your Cursor Around

	25.4 Inserting, Deleting, and Typing over Words and Characters
	25.4.1 Duplicating Lines
	25.4.2 Deleting Lines
	25.4.3 Copying Lines
	25.4.4 Moving Lines

	25.5 Searching for Text
	25.6 Saving Your Changes
	25.7 Quitting the ISPF Editor
	25.7.1 On-line Help in the Editor

	25.8 TSO's EDIT Text Editor
	25.8.1 Starting the Editor
	25.8.2 Creating a New Data Set
	25.8.3 Line Numbering and the EDIT Editor
	25.8.4 Input Mode and Edit Mode
	25.8.5 Displaying the Data Set's Current Contents
	25.8.6 The Current Line
	25.8.7 Adding New Lines
	25.8.8 Editing Existing Lines
	25.8.9 Deleting Lines
	25.8.10 Copying Lines
	25.8.11 Duplicating Lines
	25.8.12 Moving Lines
	25.8.13 Searching for Text
	25.8.14 Saving Your Changes
	25.8.15 Quitting the TSO Editor
	25.8.16 On-line Help and the TSO Editor

	Chapter 26 Using an MVS System
	26.1 Printing Data Sets
	26.2 Command Files
	26.2.1 The Automatic Logon Command File

	26.3 Communicating with Other Users
	26.3.1 Sending Files
	26.3.2 Receiving Mail and Data Sets

	26.4 ISPF
	26.4.1 Allocating Data Sets
	26.4.2 Copying Data Sets
	26.4.3 Renaming Data Sets
	26.4.4 Deleting Data Sets
	26.4.5 Displaying A Data Set's Contents
	26.4.6 Printing a Data Set

	26.5 A Sample MVS Session

