
Increasing Concurrency in Object-Oriented Databases Using Semantic
Information: A Survey

Advanced Databases Term Paper  December 1, 1993  Professor Shasha
Bob DuCharme  ID 041-56-0107  m-rd0107@cs.nyu.edu

1. Introduction

Database research has developed several mechanisms for ensuring consistency of data when concurrently exe-
cuting processes act on the same data. Various algorithms have been proposed and implemented that group the op-
erations of a process into indivisible units known as transactions and then use locks on data items (which prevent
other operations from using a data item while the lock is in effect) and redundant copies of data to coordinate, or
"interleave" transactions’ operations as they proceed. A typical problem avoided by such a scheme would be the use
by a transaction T of data that had been stored by an aborted transaction T’. This is bad data, and a key goal of
concurrency control is to prevent the use of such bad data by scheduling operations so that unfinished transactions
have no effect on other transactions [BHG87].

To prevent this, we could block transaction T until T’ has finished, thereby eliminating the possibility of T acting
on data that turns out to be useless. But what if the use T’ made of the data in question only meant reading it? If it
didn’t alter it, then the data used by T is good data whether T’ used it or not, because the latter’s use did not change
(that is, write to) it. So, there is no need to block transaction T.

For this reason, only the simplest concurrency control mechanisms—generally those used for pedantic purposes
[U88]—fail to distinguish between operations that write to data and those that merely read it. This distinction be-
tween the reading and writing of a data item to minimize the need to hold up transactions is an example of the use of
semantic information about specific operations in order to increase concurrency.

One implication of the object-oriented principle of encapsulation is that objected-oriented database systems in-
clude the details about allowable operations on data items along with definitions of those data items. These operation
definitions provide a rich source of semantic information that can help the system designer to identify situations in
which transactions can proceed concurrently. For example, a traditional system would probably prevent simultaneous
update by two different transactions of a given employee's salary and address, because at some level lower than the
application level, a scheduler would block one process from updating that employee's record while the other was
updating the appropriate field. An examination of the operations allowed on the employee object, however, will
show that the final state of this object will be the same whether UpdateSalary precedes UpdateAddress, follows it, or
executes concurrently with it.

The nature of this examination, and the use made of the resulting information, is what distinguishes these papers
from each other. Each looks further than its predecessors for semantic information to take into consideration when
deciding which circumstances require the blocking of certain operations until others finish. Part 2 of this paper
describes Spector and Schwarz's method [SS84] for analyzing all the possible relations between the operations on an
object and then developing a lock table to coordinate their execution. Part 3 describes Roesler and Burkhard's
[RB87] use of potential operation results to minimize the number of situations in which transactions must be
blocked, and part 4 examines Chrysanthis, Raghuram, and Ramamritham's methodology [CRR91] for extracting
further information from an object's data structure by using a graph of its components. Part 5 examines some of the
design and runtime implications of the use of semantic information to improve concurrency.

2. Schwarz and Spector, "Synchronizing Shared Abstract Data Types"

Peter Schwarz and Alfred Spector's 1984 paper [SS84] has three key parts: the first, and most important, de-
scribes their method for enumerating all possible dependencies between the operations on a given object and how to
evaluate this set of dependency relations to find ways to improve concurrency between transactions that simulta-
neously use that object. Because the method described in this first part deals only with the combinations of opera-
tions that may take place on one particular object type, the second part describes how to extend this algorithm to
assure serializability among concurrent transactions acting on objects of different types. The third part presents an
object locking mechanism that makes use of the information derived in the first two parts to implement a
concurrency control system more efficient than typical read/write lock schemes.

The authors define a dependency as the relationship between a specific operation of one transaction and a spe-
cific operation of another transaction on the same object. By enumerating all the dependency relations possible
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among operations on an object of a given type, we can then identify which dependency relations may play a role in
concurrency problems, which they call the proscribed relations.

To characterize a series of <transaction,operation> pairs that describe the effects of these operations on a set
of objects, with no concern for how a particular implementation may order the operations, they use the term abstract
schedule. The order in which operations actually execute is known as the invocation schedule. While a particular
abstract schedule may have many corresponding invocation schedules, a given invocation schedule corresponds to
only one abstract schedule. The main point of Schwarz and Spector’s paper is that if an abstract schedule is orderable
with respect to the union of proscribed members of a given set of dependency relations, all invocation schedules
derived from that abstract schedule are serializable. The lower the percentage of those relations that are proscribed,
the greater the possible concurrency.

The first step in implementing this for a given set of operations is the creation of the dependency relation list. Its
members use the notation Di: Tj:X →OTk:Y to represent the dependency Di formed when transaction Tk’s operation
Y and transaction Tj’s operation X are performed on the same object O.

For an object that can be read or written to, there are four possible dependency relations:

D1: Tj:R →OTk:R Tj reads an object, then Tk reads it.
D2: Tj:R →OTk:W Tj reads an object, then Tk writes to it.
D3: Tj:W →OTk:R Tj writes to an object, then Tk reads it.
D4: Tj:W →OTk:W Tj writes to an object, then Tk writes to it.

We refer to a specific relation as <Di. For example, if Tn reads an object right after Tm writes to it, then they have
the relationship Tm <D3

 Tn because their dependency is third on the above list.
The presence or absence of the above list’s relation D1 in an abstract schedule will not make the schedule any less

serializable. Such dependency relations are designated as insignificant. Concurrency problems are caused by a
combination of the other three relations; we write the union of this set of proscribed relations as {<D2 ∪ D3 ∪ D4

}. If
an abstract schedule’s transactions are orderable with respect to this union—in other words, if there is no Ti such that
Ti <D  Ta <D  Tb <D ... <D Ti—then invocation schedules derived from that abstract schedule will not cause any seri-
alizability problems.

Before moving on to how this information is used in an implementation of a data type's operations, we should
look at how the union of proscribed relations is constructed for a more complex data type. Spector and Schwarz
describe this process with three abstract data types: a directory, a typical FIFO queue, and a "weakly" FIFO queue.
The latter two demonstrate how their algorithm can be used to determine where to find greater concurrency in a
slightly different version of a particular data type—in this case, they show how the weakly FIFO queue, which is not
as picky about maintaining the order of entered items (as long as they are all guaranteed to eventually reach the
queue's front) allows more concurrency than a strictly FIFO queue.

The directory data type is worth examining more closely, because it demonstrates generalizations that can sim-
plify the process of coming up with a manageable set of dependency relations. Their sample directory object
provides a mapping between the text strings that serve as the directory's key and capabilities for arbitrary objects.
There are five possible operations that may be performed on it: DirInsert inserts a directory entry, DirDelete deletes
one, DirLookup searches for a string and returns its associated capability list, and DirDump returns a list of
<string,capability> pairs. Fortunately, five different operations don't mean 52 dependency relations. They
categorize them into three classes:

M The Modify operations, which modify an entry (DirInsert and DirDelete).

L The Lookup operations, which return information about an existing or missing entry. In addition to
DirLookup, this also includes DirInsert and DirDelete operations that fail. This demonstrates how operations
whose side effects are used by program logic must be examined carefully to determine all of their possible
roles in providing semantic information for concurrency control.

D Operations that provide information about more than one entry. The DirDump operation is the only one in this
category.

Now the operations have been reduced to three categories, but there are more than 32 possible dependency rela-
tions if we make use of another kind of semantic information: the parameters passed to these operations. If a given
directory entry is modified and the same one is then looked up, stricter control must be maintained over concurrent
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execution of these two operations than a situation in which one entry is modified and then a different one is looked
up. Providing for like and differing parameters gives the M→L combination of operations two entries in the list of
dependency relations, as it does to M→M, L→M, and L→L.

This brings the total number of dependency relations up to thirteen. In the list, σ represents a key string passed to
an operation as a parameter and σ’ represents a different argument passed to an operation in the same dependency
relation.

D1: Ti:M(σ) → Tj:M(σ’) Ti modifies an entry and then Tj modifies one with a different key.
D2: Ti:M(σ) → Tj:M(σ) Ti modifies an entry and then Tj modifies one with the same key.
D3: Ti:M(σ) → Tj:L(σ’) Ti modifies an entry and then Tj looks up one with a different key.
D4: Ti:M(σ) → Tj:L(σ) Ti modifies an entry and then Tj looks up one with the same key.
D5: Ti:L(σ) → Tj:L(σ’) Ti looks up an entry and then Tj looks up one with a different key.
D6: Ti:L(σ) → Tj:L(σ) Ti looks up an entry and then Tj looks up one with the same key.
D7: Ti:L(σ) → Tj:M(σ’) Ti looks up an entry and then Tj modifies one with a different key.
D8: Ti:L(σ) → Tj:M(σ) Ti looks up an entry and then Tj modifies one with the same key.
D9: Ti:D → Tj:M(σ) Ti dumps the directory’s entries and then Tj modifies one.
D10: Ti:D → Tj:L(σ) Ti dumps the directory’s entries, and then Tj looks one up.
D11: Ti:M(σ) → Tj:D Ti modifies an entry and then Tj dumps the directory’s entries.
D12: Ti:L(σ) → Tj:D Ti looks up an entry and then Tj dumps the directory’s entries.
D13: Ti:D → Tj:D Ti dumps the directory’s entries and then Tj does the same.

By designating the dependencies where neither operation modifies the directory (D6, D10, D12, and D13) and
those that refer to different key strings (D1, D3, D5, and D7) as insignificant, this means that abstract schedules that
keep a directory object consistent must be orderable with respect to {< D2∪D4∪D8∪D9∪D11

}.
Maintaining the same consistency with abstract schedules that use more than one type is possible with a simple

extension of this scheme: Spector and Schwarz define the set of consistent abstract schedules that operate on types
Y1, Y2, ... Yn as those that are orderable with respect to the union of the proscribed dependency relations for those
types. Types accounted for in this union are known as cooperative types.

The final part of the paper describes a mechanism that uses this information to control concurrent execution of
multiple abstract types. It is a locking scheme, but unlike the more well-known locking schemes [BHG87] it makes
use of more sophisticated semantic information than the simple distinction between read and write locks to allow
greater concurrency. This is done by the creation of a set of type-specific locks.

The first step is determining the types of locks to use. These lock classes may include a parameter for run-time
data, to further take advantage of semantic information. To lock data during an unfinished transaction that uses the
directory data type, there are three categories of locks, which clearly correspond to the three classes of dependency
relations:

· A DirModify(σ) lock shows that an unfinished transaction has inserted or deleted a directory entry with a key
string of σ.

· A DirLookup(σ) lock shows that an unfinished transaction has attempted to look up an entry with a key string of
σ.

· A DirDump lock shows that an unfinished transaction has dumped the directory.

The next step is the building of a lock compatibility table, which cross-references locks requested by running
transactions with existing held locks in order to determine when locks requests should be granted. The table has a
column for each of the lock categories. Instead of three rows, it has five, for the same reason that the directory data
type had thirteen possible dependency relations: runtime data is taken into consideration to increase concurrency. To
account for the possibility that each pair of operations in M→L, M→M, L→M, and L→L dependencies can be
invoked using identical or different key strings as parameters, the DirModify(σ') and DirLookup(σ') rows are added
beneath the DirModify(σ) and DirLookup(σ) rows.
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Lock Held
Lock requested DirModify(σ) DirLookup(σ) DirDump
DirModify(σ) No No No
DirModify(σ’) OK OK No
DirLookup(σ) No OK OK
DirLookup(σ’) OK OK OK
DirDump No OK OK

Without the two redundant entries caused by including the <DirModify(σ’),DirDump> entry as well as the
<DirModify(σ),DirDump> entry and the <DirLookup(σ’),DirDump> entry as well as the <DirLookup(σ),DirDump>
entry, the table would have thirteen entries—one for each of the dependency relations.

After an operation defined for a particular object acquires a lock on that object (or some component of it), it
holds it until the end of its transaction to prevent the necessity of cascading aborts. The possibility that the two
DirModify operations (DirDelete and DirInsert) may succeed or fail makes it possible to take advantage of further
run-time information to improve concurrency—if either fails, its lock is downgraded to a DirLookup lock, which is
not as restrictive about how many different operations may proceed while it is in effect.

The paper goes on to construct similar lock compatibility tables for strict FIFO queues and weakly FIFO queues.
As we will see, the other papers go on to use even more information to increase potential concurrency, but they build
on groundwork laid by Schwarz and Spector: the creation of a table cross-referencing all possible simultaneous
operations on an object, taking input parameters into account to minimize the number of situations in which
transactions must be held up.

3. Roesler and Burkhard, "Concurrency Control Scheme for Shared Objects: A Peephole
Approach Based on Semantics"

Marina Roesler and Walter Burkhard's paper [RB87] describes the concurrency optimization work of Spector1,
Schwarz, and others as dealing with "operation conflict" as opposed to "interaction conflict," which forms the basis
of their work. While the others judged conflicts over an object in terms of operations defined for that object and the
run-time parameters used with those operations, Roesler and Burkhard incorporate further semantic information into
their evaluation of conflicts: the return value of the operations. They also use an alternative to serializability as a
criterion for correct cooperation between operations: commutativity, or the demonstration that the relative order of
execution of two operations does not affect their final result.

Before each commit in their scheme, an operation is "pseudo-executed" on each object—in other words, the steps
are performed to determine the operation's return value, but the object's state is not yet updated. This combination of
the potential state transition and return value is known as an interaction, identified by an
<operation(parameter),return value> pair. (The operation can actually have zero or more parameters.) An
object's object manager then uses a compatibility function to determine whether the interaction is compatible with the
other active transactions using that object. If so, the new operation's transaction is allowed to continue; otherwise, it
is blocked. The function uses a compatibility table to compare one active interaction at a time with a potential new
interaction.

The paper2 has three main parts. The first outlines the model of the system and the specification of the objects,
the second explains how to construct the table used by the compatibility function, and the third introduces a sched-
uler that uses the table.

                                                          
1Like Skarra and Zdonik's paper "Concurrency Control and Object-Oriented Databases" [SZ89] in "Object-

Oriented Concepts, Databases, and Applications," they actually refer to Peter Schwarz's 1984 Carnegie Mellon Ph.D.
thesis "Transactions on Typed Objects" and not the Schwarz and Spector paper described earlier.  Skarra and
Zdonik's description of Schwarz's ideas clearly show that his work with Alfred Spector reflected the concepts and
algorithms described in his thesis.

2The paper is actually an extended abstract of a longer technical report that Roesler and Burkhard wrote the same
year [RB87a]; to shorten it, they omitted proofs and all but the minimum number of tables necessary to demonstrate
their construction.
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An object’s specification SPECO has two parts: the first is a triple representing the possible states, initial state,
and possible interactions (Io) for that object. The other part is the object’s compatibility function, which returns a yes
or no to give the new transaction permission to proceed. It may also return an x if the combination won’t happen and
its result is therefore moot. For example, a counter’s decrement operation cannot return a value of false if the
counter’s value is greater than 0, so the pairing of <value,3> and <dec,false> for a counter object will never
happen.

The following table demonstrates in more detail the values returned by a compatibility function for a counter ob-
ject.

I <inc,true> <dec,true> <dec,false> <val,0>. . .

I’
<inc,true> yes yes no no
<dec,true> yes no x x
<dec,false> no x yes yes
<val,0> no x yes yes
<val,1> no no x x

…

The value operation brings up another point: an object may have operations defined with an infinite number of
return values, requiring a compatibility table of infinite size. That’s why the table shown is not the one used by the
compatibility function, but only the starting point in constructing one. Nearly half of Roesler and Burkhard’s paper is
devoted to the algorithm used to create a finite table CTO from the infinite table CO. In addition to being finite, table
CTO must also be abbreviation-complete—that is, every entry in CO must have a corresponding entry in CTO—and it
must be sound. This final property means that all yes entries in CTO must correspond to yes or x entries in CO.

There are more than one CT0 tables that can be created from a given CO table. Roesler and Burkhard define CT0
1

as being more refined than CT0
2 if it has more yes entries, allowing greater concurrency. They do point out that it

may prove cost-efficient to settle for less than a perfectly refined CT0 table.
The crux of the paper is the set of rules for deriving CT0 from an object's specification SPECO. The first step is

the selection of a granule for the object. The granule is a special kind of atom, an indivisible portion of the object's
state that is accessible by the object's interactions. The granule is the atom that will provide the semantic information
that helps the compatibility function judge whether two interactions are compatible. It could be a parameter or an
interaction's return value. A constant, not being a part of an object's state, cannot be a granule. For the FifoQueue
object used as an example in their paper, an item of the queue is designated as the granule.

For the next step, we group the object's possible interactions into four "families" that generalize about the role of
the selected granule in the interactions' parameters and/or return values. The FifoQueue example has the following
interactions:

<enq(i),true> The value i is added to the queue successfully. (There is no <enq(i),false> mentioned in the
example.)

<deq,i> A dequeue operation returns the value i.

<deq,no> A dequeue operation is unsuccessful.

<printq,q> Print the queue.

The following shows the four families into which the interactions are grouped. In the abbreviations, gr represents
a granule and gr represents "not granule."

<op(gr),gr> An operation that has at least one granule among its parameters returns a granule.

<op(gr),gr> An operation that has at least one granule among its parameters returns a value that is not a
granule. <enq(i),true> is in this family.

<op,gr> An operation with no granules for parameters returns a granule. <deq,i> is in this family.

<op,gr> An operation with no granules for parameters returns a value that is not a granule. <deq,no>

and <printq,q> are both part of this family.
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While it may seem that there is only one interaction in the <op(gr),gr> group, remember that, just as <val,0>,
<val,1>, <val,2> etc. were considered different interactions for the counter object, there is a different
<enq(i),true> for each value of i. We need to bring the number of interactions (Io) down to a finite number
(designated Îo) and therefore bring our infinite compatibility table down to a finite size. To accomplish this, the next
step partitions each family into clusters of equivalence by designating a class for each group of interactions that
agree on operation names, granular parameter values, and granular or constant return values. We then assign an
abbreviation to each class.

With the FifoQueue’s operations (although not necessarily with all objects), each class happens to correspond to
an interaction family. From the <op(gr),gr> family, we can group operations that agree on operation names and
constant return values and refer to them using the abbreviation format <op(g),c>. The <enq(g),true> interaction is
the only one in this class. In the <op,gr> family we have operations agreeing on operation names and returning a
granular value. We assign this group the abbreviation format <op,g>. <deq,g> is the only interaction for this class.
The final family with any FifoQueue operations is <op,gr>, in which operations agree on operation names and
constant return values. This class, which uses the abbreviation format <op,c>, has two operations: <deq,no> and
<printq,q>. The family not included among these three, <op(gr),gr>, has no interactions to assign to any class.

The next step uses these abbreviations to create the auxiliary tables TBÎÎ' that cross-reference one set of interac-
tions (Î) against another (Î'). Each table compares all the possible combinations of granule equality and inequality for
one pair of interaction classes and assigns a predicate p to each combination.

For example, the table at right compares <op(g),c>
with <op(g),c>, which for the FifoQueue means that the
table shows the possible states of two concurrent
<enq(q)true> operations. The symbols p1 and r1 repre-
sent the parameter and return value of Î, and p2 and r2 of
Î' , and g and g’ represent different granule values.

A more complex TBÎÎ' example shows the table comparing <op(gr),gr> with <op(gr),gr>:

Î <op(g),g> <op(g),g1>

Î'
<op(g),c> p1 = r1 ∧ p1 = p2 p1 ≠ r1 ∧ p1 = p2
<op(g1),c> p1 = r1 ∧ p1 ≠ p2 p1 ≠ r1 ∧ p1 ≠ p2 ∧ r1 = p2
<op(g’),c> p1 ≠ r1 ∧ p1 ≠ p2 ∧ r1 ≠ p2

Once the auxiliary tables are created, we replace each predicate with a yes, no, or x, using the infinite
compatibility table CO to consider the equality and inequality relationships listed for the interactions’ parameters and
return values. If there are no possible states where a given pair of interactions can coexist with the listed equalities,
the corresponding cell of the table gets an x. If they can coexist and commute (that is, if the Î and Î'  interactions can
act on the object in either order and still get the same result, with neither of them producing an undecidable result)
then the cell gets a yes; otherwise it gets a no. (Roesler and Burkhard assert that, besides the actual selection of the
granule atom, this is the only step in the whole process that cannot be automated, and even this step can be
automated for certain classes of objects.) This use of commutativity instead of serializability as the correctness
criterion, while not their invention, is an important break from the practice of most other concurrency mechanisms
[SS84][BHG87].

The first TBÎÎ' table shown above, which com-
pared the two <op(g),c> operations, would get
turned into the table at right for the FifoQueue’s
<enq(g),true> interaction.

These values are entered because if two enqueue
operations try to add the same value to the queue, the order in which they do it doesn’t matter, so they can be allowed
to proceed concurrently. If the parameter values are not equal, the new one must be held up until the other finishes.

The final step in the creation of the finite CTO table is the collapse of each auxiliary table TBÎÎ' into a single cell
of the CTO table according to the following rules: if all the entries are x, it gets collapsed to an x entry. If there are no
yes entries and at least one no, it’s a no. Otherwise, it’s a YP where the P shows the predicate that allows the inter-
actions to proceed concurrently. If possible, multiple YP predicates should be simplified into as few entries as
possible.

Î <op(g),c>

Î'
<op(g),c> p1 = p2
<op(g’),c> p1 ≠ p2

Î <enq(g),true>

Î'
<enq(g),true> Y
<enq(g’),true> N
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For the FifoQueue, this produces the following finite, sound, abbreviation-complete CTFifoQueue table (because
the table is symmetrical, redundant blank entries are not filled in):

Î <enq(g),true> <deq,g> <deq,no> <printq,q>

Î'
<enq(g’),true> Yp1=p2

<deq,g’> Y N
<deq,no> N x Y
<printq,q> N N Y Y

To implement the use of this table, the paper describes a mechanism where each transaction has a transaction
manager that forwards requests for operations to each object’s object manager. The object manager, which is part of
the definition of the object, keeps the object’s current state, its finite compatibility table CTO, a list of currently ac-
tive, compatible interactions known as the active pool, and a set of queues for the interactions of transactions that are
currently not compatible with those in the active pool. This set of queues is known as the conflict pool.

The object manager takes each operation that is neither a commit nor an abort and pseudo-executes it on a copy
of the object. Once it gets the result, it uses the compatibility function (which uses the compatibility table CTO) to
check whether that <operation,return value> pair is compatible with the interactions currently in the active pool.
If so, it adds the operation to the active pool and returns the return value to the transaction that called it. If not, it
adds the interaction to a queue for that transaction in the conflict pool.

Upon receipt of an abort instruction, the calling transaction’s interactions are removed from both pools. A commit
instruction causes the object manager to remove the transaction’s interactions from the active pool and to re-evaluate
the object’s current state for each of those interactions. After either a commit or abort, conflict pool interactions may
try again to get into the active pool.

Roesler and Burkhard’s most significant contribution to the technique of analyzing semantic information in order
to identify and minimize potential concurrency problems is the inclusion of an operation’s possible results in the
analysis. By going beyond an examination of attributes that reveal an object’s current state to consider potential fu-
ture states, their scheme significantly increases potential operation conflicts to take into account and hence increases
the number of identifiable situations in which a newly invoked transaction does not have to be held up to wait for
currently executing ones.

4. Chrysanthis, Raghuram, and Ramamritham, "Extracting Concurrency from Objects: A
Methodology"

In the quest for new semantic information to take into account in order to justify not blocking a newly invoked
transaction, Panos Chrysanthis, S. Raghuram, and Krithi Ramamritham [CRR91] derive additional semantic informa-
tion from objects by creating graphs based on the objects’ abstract specification and analyzing any ordering of the
objects’ components (for example, the members of a queue, stack, or sorted directory). To increase concurrency even
further, they break dependencies down into the categories of abort dependencies and commit dependencies. As we
will see, a commit dependency is weaker than an abort dependency, and therefore allows more concurrency.

Not including the introduction and summaries, the paper has two key sections. First, they explain the graph used
for the object model and the principle of locality, which designates which nodes or edges of an object’s graph are
affected by which operations. They then explain a methodology for developing an object’s compatibility table based
on the information derived from the graph and the operations defined on that object.

The sample data structure used for an example is a QStack, which combines the properties of a queue and a
stack. The operations defined on it are Enq(e), Deq(), Pop(), Top(), Size(), Replace(e1,e2) (which replaces all e1
values in the QStack with e2) and XTop() (which exchanges the first two elements in the back of the QStack).

Before describing the graph model, the paper defines three concepts that characterize an operation’s potential in-
teraction with other operations: the concepts of observer, modifier, and modifier-observer. An observer returns in-
formation about an object’s state. A modifier modifies the state, but does not return any information about it. A
modifier-observer modifies the state and returns something from that state—for example, Deq(). An operation's
membership in one of these categories can vary, depending on the state of the object being acted upon; for example,
a successful Enq() is a modifier-observer, because it changes the QStack's state and returns an ok to indicate its
success, and an unsuccessful Enq() is merely an observer, returning a nok. An operation is a modifier-observer if
there is any possible state of the object in which the operation is a modifier-observer, and it is a modifier if there are
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no states in which the operation is a modifier-observer, but at least one in which it is a modifier. If neither of these
hold true, the operation is an observer.

The idea of "modifying" and "observing" sounds similar to the concepts of "writing" and "reading." The paper’s
authors maintain that they are broader, more flexible terms, because there is no way to distinguish whether a read or
write affects a whole object or just a part of it. The identification of which part of an object is being modified and/or
observed by a given operation, and its relation to any part being modified and/or observed by another operation is a
crucial step in their evaluation of possible concurrency problems. To perform this identification, they use a graph
that makes it possible to keep track of an object’s structure and content.

The graph, which can be constructed from an object’s abstract specifications, is a rooted graph with vertices rep-
resenting an object’s components, its composed-of edges that begin at the root and eventually reach every vertex, and
its ordering edges, which show the relative ordering of vertices at a particular level.

The graph of an object’s instance is dynamic, represent-
ing its state at a given time. For example, this graph shows
a QStack object that currently has four items. Solid arrows
show the composed-of edges and dotted arrows show
ordering edges. The b and f on the graph show that two
composed-of edges of the QStack are used as pointers to
the back and front of the stack.

Subsets of the graph’s vertices known as localities are
used to identify an operation’s effect on an object. The
locality Lo of an operation o is the set of vertices that have
been affected by o, whether by insertion, deletion, change,
or observation, as well as the vertices connected to order-
ing edges that have been changed or observed by o.

The locality Lo has two important subsets: the structure locality Lo
s and the content locality Lo

c.  Lo
s contains the

vertices involved in an operation’s structural effect on an object’s graph: vertices that are inserted, deleted, connected
to edges that are changed or observed, and vertices whose presence is observed by o. Lo

c contains vertices involved
in an operation’s changes on an object’s content. This includes vertices that are added, removed, or whose content is
changed or observed. Note the difference in the kind of observed vertices included in the two groups: an operation
that checks whether a particular vertex has a sibling is checking for the sibling's presence—a structural observation
that would put the sibling in the Lo

s set. An operation that checks for the value stored in a vertex, on the other hand,
is observing the vertex's contents, which would include the vertex in the Lo

c set.
The distinction between modification and observation makes it possible to break down the content locality into

the content-observation locality Lo
co and the content-modification locality Lo

cm. Similarly, the structure locality is
divided between the structure-observation locality Lo

so and the structure-modification locality Lo
sm. Depending on

the state of the object, a given operation can belong to all four groups; for example, a failed Deq() operation returns
a nok, indicating that that QStack is empty, which qualifies it as a structure observation. A successful Deq() removes
a vertex, which constitutes a modification to the QStack's structure and content. It also returns the vertex's value,
making it a content observer as well.

Once these distinctions between subsets of localities are made, the paper asserts that operations limited to an
object's structure cannot form dependencies with operations limited to an object's contents. The distinction therefore
becomes useful when we build the compatibility tables.

An object may have other objects as components. An object component that is not another object is said to have a
simple data value. Imagine constructing a hierarchical graph of an object and of all of its subcomponent objects so
that the outer vertices of the graph were all simple data values. The collection of an object ob's set of simple data
value vertices and those of all of its component object's simple data values is designated as Vob

simple. Knowing the
vertices in Vob

simple enables us to determine whether an operation o on an object ob is a global operation. If the lo-
cality Lo of that operation contains all the vertexes in Vob

simple, it's considered a global operation. (A non-global op-
eration is called just that—calling it a "local" operation would be pretty confusing with all this talk of "localities.")

We now have all the information necessary to put together an object's compatibility table. Other concurrency
schemes typically have entries of either yes, meaning that the two operations intersecting at that table cell commute
and can therefore proceed concurrently, or a no, indicating that they conflict. The method used by Chrysanthis et al.
uses ND for "no dependency" instead of yes, and they refine no into two categories: AD for "abort dependency" and CD

for "commit dependency."

A

B           C            D             E

b f
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An abort dependency means that the second of two conflicting transactions can commit only if the first one
commits. If transaction T begins execution but then its conflicting predecessor T’ aborts, then T must also abort, giv-
ing this dependency its name. For example, if T reads data written by T’ and T’ then aborts, then the data causing the
conflict is no longer any good, requiring T to abort.

With a commit dependency, the second of two conflicting transactions can commit only after the first one com-
mits or aborts. This ensures serializability, because if transaction T’ starts before transaction T, enforcing commit de-
pendency prevents T from committing before its predecessor. A commit dependency is not as strong as an abort de-
pendency, because it can only postpone a commit, as opposed to actually preventing a commit. An abort dependency
is actually a stronger form of a commit dependency, because it too prevents the second of two conflicting
transactions from committing until the first one has resolved. The difference is the action that an abort dependency
takes upon the first transaction’s abort.

So, instead of an entry of no in a compatibility table to show that two operations do not conflict, we will see
either AD or CD. The refinement into the two possibilities allows more concurrency because of the weaker nature of
the commit dependency. For "no dependency," we could enter ND, but those entries are left blank to make the tables
easier to read.

Given that an abort dependency is stronger than a commit dependency and a commit dependency is stronger than
a "no dependency," the stronger function makes it possible to safely pick the appropriate dependency of the two
that could be associated with the modifier-observer combination. This allows us to construct simpler tables, because
not as many classes of operations must be compared to create the template tables.

We use template tables to create compatibility tables for a given
object’s operations. The table on the right shows the dependencies
created by the four interactions possible between observers and
modifiers.

If it’s possible to identify whether an object’s observation and modification operations affect its content and/or
structure, we can use the following three tables, which refine the information shown in the table above.

We use the initials CO, SO, CSO, CM, SM, and CSM to represent content observers, structure observers, etc. up through
content/structure modifiers. The columns of each table represent the possible operations currently being performed
on an object, and the rows represent potential new operations that may wish to execute concurrently with those.

Once an object’s operations have been classified into the CO, SO, CSO, CM, SM and CSM categories, we can use these
tables to find the appropriate entries for each cell of the object’s preliminary compatibility table. It’s a preliminary
table because the consideration of additional information about the operations makes it possible to "weaken" some of
the cells, allowing further concurrency in the object’s operations.

Two important sources of information are operation outcomes and localities. For example, the QStack’s Deq and
Push operations are both Modifier-Observers. The stronger of the potential dependencies between the two of them is
an abort dependency (AD). However, a Push that returns nok is an observer, not a modifier, so we don’t always need
the stronger dependency. The AD in the compatibility table’s cell cross-referencing Push with Deq therefore gets
replaced with two (dependency,condition) pairs: (CD,Push

out
=nok) and (AD,Push

out
=ok). Similar steps are taken

for the rest of the compatibility table, taking operation inputs into consideration as well as outcomes in order to
identify situations in which concurrency can be increased.

The last step in refining the compatibility table takes non-global locality into account. For example, in the graph
of QStack, f identifies the composed-of edge affected by the structural modifier Deq and b identifies the edge modi-
fied by Push. In any QStack having more than one member, f and b will be two separate edges, and concurrent exe-
cution of Push and Deq will cause no trouble. So the table cell cross-referencing Push and Deq can now have its sec-
ond (dependency, condition) pair replaced by two more, giving the cell these three pairs: (CD,Push

out
=nok),

(AD,f=b), and (ND,f≠b). Considering how often f will typically not equal b, this last refinement to the table cell
clearly adds a great deal of concurrency to the compatibility table.

Unlike the other papers, [CRR91] presents no implementation of their concurrency scheme. The paper’s conclu-
sion points out, with a touch of pride, that the principles upon which they base their work are general enough to make
their concurrency scheme viable in a range of implementations. A typical one would include an object manager as

O M

O AD
M CD CD

(O,M) SM CM CSM
SO AD AD
CO AD AD
CSO AD AD AD

(M,M) SM CM CSM
SM CD CD
CM CD CD
CSM CD CD CD

(M,O) SO CO CSO
SM CD CD
CM CD CD
CSM CD CD CD
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part of an object’s implementation to control access to the object by looking up potential dependencies in the
compatibility table before allowing new operation executions to proceed.

5. Conclusion

A key tenet of the object-oriented approach is the advantage of dealing with data and operations at a higher level
of abstraction. The increased concurrency available by using semantic information to schedule operations on an
object-oriented database demonstrates a benefit of this, because it allows the developer to evaluate operations in
terms that come closer to their actual functions instead of requiring him or her to break these operations down into
their component reads and writes.

The tradeoff of working at a higher level is the same one that drives some people to still work in assembly lan-
guage: it’s computationally more expensive. Older concurrency algorithms ask "Are the executing operations
reading, writing, or both? Does the new one that wants to join them plan to do reads, writes, or both?" Algorithms
that take advantage of additional semantic information do so by comparing many other aspects of currently executing
operations to possible new ones. The more semantic information that they use, the more comparisons must be done,
and the more CPU cycles are required to determine whether the new transaction really needs to be held up or not.
This is compounded by the need to check much of the most valuable semantic information, such as potential
transaction results or passed parameters, at run-time whenever a transaction is invoked.

However, CPU cycles get cheaper every year, and in this case they are being spent on a good cause: increased
efficiency in the overall system. When a scheduling algorithm considers whether to allow transaction T to proceed
concurrently with T’, a quick glance at T and T’ may show that their concurrent execution might cause problems,
while a closer examination may show that there won’t in fact be any problem. In this case, T can be allowed to
continue and the overall system proceeds more quickly despite the extra cycles used to analyze the relationship
between T and T’.

Another problem with object-oriented systems will require more than cheaper CPU cycles to ameliorate. The
efficiency of the concurrency schemes described in this paper depend heavily on the quality of the database’s design.
Any of these concurrency schemes, when implemented with a badly designed set of objects and operations, will
result in a mess. While proponents love to cite the ease of use and re-use of object-oriented systems, the initial design
and creation of these systems are not easy to implement well. There is currently no clear, relatively simple series of
steps comparable to the normalization process used in designing relational systems [U88] that start with a list of data
attributes and their relationships and turns this list into a reasonably efficient object-oriented database schema.
Improved concurrency is a good example of the benefits of object-oriented systems that will be available when
further progress is made on design issues.
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Questions

1. Schema evolution [N89], or modification to class definitions, is an important issue in the maintenance of object-
oriented systems. Imagine a Queue object with Enqueue, Dequeue, and Peek operations defined. All of the
compile-time compatibility table operations have been performed, with their results stored where they can be used
to maximize concurrency. Now, we add a LookUp(i) operation to check for the existence of a queue member with
the value i and return a Yes or No. What would be necessary to take this new operation into account with systems
using each of the three concurrency schemes described in this paper?

2. Queues provide a typical example of the value of semantic information in controlling concurrency, because while
simpler concurrency schemes view concurrent enqueue and dequeue operations as concurrent writes to the same
data structure and therefore prevent them, a more sophisticated scheme could see that different queue items are
being affected and that the enqueue and dequeue operations would not get in each other’s way. For a queue that
holds less than two items, interleaving of enqueue and dequeue instructions could pose a problem, and should
therefore not be allowed to proceed concurrently. If the number of items currently in a queue is private
information within the queue class of objects and a concurrency control scheme uses that value as semantic
information to decide whether a given pair of enqueue and dequeue operations should be allowed to proceed
concurrently, does this violate the object-oriented principle of encapsulation?

3. Which concurrency scheme has the highest run-time cost? Which has the lowest?

4. As relational database systems try to compete in the specialized markets currently using object-oriented systems,
one new feature incorporated into some relational systems is user-defined operations [S92]. These systems allow
the use of application-specific operations from within SQL statements. What circumstances would allow these sys-
tems to take advantage of the increased concurrency availability in object-oriented database systems?

Answers

1. Using Schwarz and Spector’s scheme, you would first add a dependency relation to the list that compared LookUp
with each existing operation, and an extra one comparing LookUp(i’) with Enqueue(i) (that is, in addition to the
dependency relation of LookUp and Enqueue acting with the same parameter values, you would have another
where they used different parameter values). A new lock class must be defined, and then a new row and column
must be calculated for the lock compatibility table.

For a system using Roesler and Burkhard’s scheme, the two possible results <LookUp(i),Yes> and
<LookUp(i),No> must be assigned to an interaction family. They both belong in the family <op(gr),gr>, as does
<Enqueue(i),Yes>, and the same auxiliary table can be used to determine the predicates to consider. So the main
work here is the next step: figuring out which predicates become yes, no, or x when comparing <LookUp(i),Yes>
and <LookUp(i),No> with other interactions. Like the steps before the conversion of predicates into yes, no, and
x, the final step—the collapse of the LookUp operation's TBÎÎ' tables into individual entries for each of the two
new interactions’ rows and columns of the Queue’s finite CT table—can be automated.

This ease of adding the new operation with Boesler and Burkhard's scheme is contingent on the simple, obvious
choice of granule for the Queue: the queue item. For a more complex class, the choice of granule would strongly
affect the amount of trouble necessary to incorporate a new operation into an object's concurrency control.

Using the scheme of Chrysanthis et al., the LookUp operation would be classified as a content observer of the
queue, so adding the new row and column for it to the preliminary compatibility table would be simple using the
template tables. The weakening of the new entries, or the consideration of operation outcomes and localities to
allow for the possibility of more concurrency, must then be done manually to each cell in the new row and
column.

2. Encapsulation is maintained, because in the first two papers and any reasonable implementation of the third
[CRR91], concurrency implementation is part of the definition of the class, not an outside process reading the
object's private variables.

3. Roesler and Burkhard's scheme, with its pseudo-execution of operations and conflict pool of blocked transaction
queues, has more run-time work to do than either of the other two. While all the schemes consider an operation's
run-time parameters, Chrysanthis et al.'s consideration of locality (a property that, given the different results of
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concurrently executing Enqueue and Dequeue operations on an empty queue versus a queue with four items, must
be constantly re-evaluated at runtime) makes Spector and Schwarz’s runtime evaluation of just the operation
parameters the least costly at runtime—and, not coincidentally, the least capable of maximizing concurrency.

4. The object-oriented principle of encapsulation makes it possible to determine all of the operations that may be
legally performed on an object. A relational system that allows the cross-referencing of possible operation
characteristics would need a catalog of the operations available and preferably some mechanism to ensure that no
operations outside of the "registered" ones can be performed on the data.
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